Objective: Our previous study indicated an association between cellular immune reactivity to common dietary proteins (DPs) and excessive proinflammatory cytokine production with endotoxin (lipopolysaccharide, LPS), a major stimulant of innate immunity in the gut mucosa, in a subset of autism spectrum disorder (ASD) children. However, it is unclear whether such abnormal LPS responses are intrinsic in these ASD children or the results of chronic gastrointestinal (GI) inflammation secondary to immune reactivity to DPs. This study further explored possible dysregulated production of proinflammatory and counter-regulatory cytokines with LPS in ASD children and its relationship to GI symptoms and the effects of dietary intervention measures. Methods: This study includes ASD children (median age 4.8 years) on the unrestricted (n = 100) or elimination (n = 77) diet appropriate with their immune reactivity. Controls include children with non-allergic food hypersensitivity (NFH; median age 2.9 years) on the unrestricted (n = 14) or elimination (n = 16) diet, and typically developing children (median age 4.5 years, n = 13). The innate immune responses were assessed by measuring production of proinflammatory (TNF-α, IL-1β, IL-6, and IL-12) and counter-regulatory (IL-1ra, IL-10, and sTNFRII) cytokines by peripheral blood mononuclear cells (PBMCs) with LPS. The results were also compared to T-cell responses with common DPs and control T-cell mitogens assessed by measuring T-cell cytokine production. Results: ASD and NFH PBMCs produced higher levels of TNF-α with LPS than controls regardless of dietary interventions. However, only in PBMCs from ASD children with positive gastrointestinal (GI(+)) symptoms, did we find a positive association between TNF-α levels produced with LPS and those with cow’s milk protein (CMP) and its major components regardless of dietary interventions. In the unrestricted diet group, GI(+) ASD PBMCs produced higher IL-12 than controls and less IL-10 than GI(–) ASD PBMCs with LPS. GI(+) ASD but not GI(–) ASD or NFH PBMCs produced less counter-regulatory cytokines with LPS in the unrestricted diet group than in the elimination diet group. There was no significant difference among the study groups with regard to cytokine production in responses to T-cell mitogens and other recall antigens. Conclusion: Our results revealed that there are findings limited to GI(+) ASD PBMCs in both the unrestricted and elimination diet groups. Thus our findings indicate intrinsic defects of innate immune responses in GI(+) ASD children but not in NFH or GI(–) ASD children, suggesting a possible link between GI and behavioral symptoms mediated by innate immune abnormalities.
Background: Among patients with autism spectrum disorders (ASD) evaluated in our clinic, there appears to be a subset that can be clinically distinguished from other ASD children because of frequent infections (usually viral) accompanied by worsening behavioural symptoms and/or loss/decrease in acquired skills. This study assessed whether these clinical features of this ASD subset are associated with atopy, asthma, food allergy (FA), primary immunodeficiency (PID), or innate immune responses important in viral infections.
BackgroundSome children with autism spectrum disorders (ASD) are characterized by fluctuating behavioral symptoms following immune insults, persistent gastrointestinal (GI) symptoms, and a lack of response to the first-line intervention measures. These children have been categorized as the ASD-inflammatory subtype (ASD-IS) for this study. We reported a high prevalence of non-IgE mediated food allergy (NFA) in young ASD children before, but not all ASD/NFA children reveal such clinical features of ASD-IS. This study addressed whether behavioral changes of ASD-IS are associated with innate immune abnormalities manifested in isolated peripheral blood (PB) monocytes (Mo), major innate immune cells in the PB.MethodsThis study includes three groups of ASD subjects (ASD-IS subjects (N = 24), ASD controls with a history of NFA (ASD/NFA (N = 20), and ASD/non-NFA controls (N = 20)) and three groups of non-ASD controls (non-ASD/NFA subjects (N = 16), those diagnosed with pediatric acute onset-neuropsychiatric syndrome (PANS, N = 18), and normal controls without NFA or PANS (N = 16)). Functions of purified PB Mo were assessed by measuring the production of inflammatory and counter-regulatory cytokines with or without stimuli of innate immunity (lipopolysaccharide (LPS), zymosan, CL097, and candida heat extracts as a source of β-lactam). In ASD-IS and PANS subjects, these assays were done in the state of behavioral exacerbation (‘flare’) and in the stable (‘non-flare’) condition. ASD-IS children in the ‘flare’ state revealed worsening irritability, lethargy and hyperactivity.Results‘Flare’ ASD-IS PB Mo produced higher amounts of inflammatory cytokines (IL-1β and IL-6) without stimuli than ‘non-flare’ ASD-IS cells. With zymosan, ‘flare’ ASD-IS cells produced more IL-1β than most control cells, despite spontaneous production of large amounts of IL-1ß. Moreover, ‘flare’ ASD-IS Mo produced less IL-10, a counterregulatory cytokine, in response to stimuli than ‘non-flare’ cells or other control cells. These changes were not observed in PANS cells.ConclusionsWe observed an imbalance in the production of inflammatory (IL-1ß and IL-6) and counterregulatory (IL-10) cytokines by ‘flare’ ASD-IS monocytes, which may indicate an association between intrinsic abnormalities of PB Mo and changes in behavioral symptoms in the ASD-IS subjects.
BackgroundMicroRNAs (miRNAs) play a major role in regulating immune responses at post-transcriptional levels. Previously, we have reported fluctuating interlukine-1ß (IL-1ß)/IL-10 ratios produced by peripheral blood monocytes (PBMo) in some patients with autism spectrum disorders (ASD). This study examined whether changes in miRNA expression by PBMo are associated with changes in IL-1ß/IL-10 ratios and how such changes are associated with ASD clinical features.MethodsmiRNA expression by purified PBMo from ASD subjects (N = 69) and non-ASD controls (N = 27) were determined by high-throughput sequencing. Cytokine production by PBMo in responses to stimuli of innate immunity, and behavioral symptoms [assessed by aberrant behavioral checklist (ABC)] were also evaluated at the same time of sample obtainment.ResultsAs a whole, there was no difference in miRNA expression between ASD and control non-ASD PBMo. However, when ASD cells were subdivided into 3 groups with high, normal, or low IL-1ß/IL-10 ratios as defined in the “Results” section, in comparison with the data obtained from non-ASD controls, we observed marked changes in miRNA expression. Namely, over 3-fold changes in expression of miR-181a, miR-93, miR-223, miR-342, and miR-1248 were observed in ASD PBMo with high or low IL-1ß/IL-10 ratios, but not in ASD PBMo with normal ratios. These miRNAs that had altered in expression are those closely associated with the regulation of key signaling pathways. With changes in IL-1ß/IL-10 ratios, we also observed changes in the production of cytokines (IL-6, TNF-α, and TGF-ß) other than IL-1ß/IL-10 by ASD PBMo. The association between behavioral symptoms and cytokine levels was different when ASD cells exhibit high/low IL-1ß/IL-10 ratios vs. when ASD cells exhibited normal ratios. Non-IgE-mediated food allergy was also observed at higher frequency in ASD subjects with high/low IL-1ß/IL-10 ratios than with normal ratios.ConclusionsChanges in cytokine profiles and miRNA expression by PBMo appear to be associated with changes in ASD behavioral symptoms. miRNAs that are altered in expression in ASD PBMo with high/low IL-1ß/IL-10 ratios are those associated with inflammatory responses. Changes in IL-1ß/IL-10 ratios along with changes in miRNA expression may serve as biomarkers for immune-mediated inflammation in ASD.Electronic supplementary materialThe online version of this article (10.1186/s12974-017-1003-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.