We know from observations that globular clusters are very efficient catalysts in forming unusual short-period binary systems or their offspring, such as low-mass X-ray binaries (LMXBs; neutron stars accreting matter from low-mass stellar companions), cataclysmic variables (CVs; white dwarfs accreting matter from stellar companions), and millisecond pulsars (MSPs; rotating neutron stars with spin periods of a few ms). Although there has been little direct evidence, the overabundance of these objects in globular clusters has been attributed by numerous authors to the high densities in the cores, which leads to an increase in the formation rate of exotic binary systems through close stellar encounters. Many such close binary systems emit X-radiation at low luminosities (L_x < 10^{34} erg/s) and are being found in large numbers through observations with the Chandra X-ray Observatory. Here we present conclusive observational evidence for a link between the number of close binaries observed in X-rays in a globular cluster and the stellar encounter rate of the cluster. We also make an estimate of the total number of LMXBs in globular clusters in our Galaxy.Comment: 11 pages, 1 b&w figure, 1 color figur
The Sloan Digital Sky Survey has validated and made publicly available its First Data Release. This consists of 2099 square degrees of five-band (u, g, r, i, z) imaging data, 186,240 spectra of galaxies, quasars, stars and calibrating blank sky patches selected over 1360 square degrees of this area, and tables of measured parameters from these data. The imaging data go to a depth of r ~ 22.6 and are photometrically and astrometrically calibrated to 2% rms and 100 milli-arcsec rms per coordinate, respectively. The spectra cover the range 3800--9200 A, with a resolution of 1800--2100. Further characteristics of the data are described, as are the data products themselves.Comment: Submitted to The Astronomical Journal. 16 pages. For associated documentation, see http://www.sdss.org/dr
We report on the Chandra X-Ray Observatory ACIS-S3 imaging observation of the globular cluster NGC 6752. We detect six X-ray sources within the 10>5 core radius and 13 more within the 115 00 half-mass radius down to a limiting luminosity of L X % 10 30 ergs s À1 for cluster sources. We reanalyze archival data from the Hubble Space Telescope and the Australia Telescope Compact Array and make 12 optical identifications and one radio identification. Based on X-ray and optical properties of the identifications, we find 10 likely cataclysmic variables (CVs), one to three likely RS CVn or BY Dra systems, and one or two possible background objects. Of the seven sources for which no optical identifications were made, we expect that approximately two to four are background objects and that the rest are either CVs or some or all of the five millisecond pulsars whose radio positions are not yet accurately known. These and other Chandra results on globular clusters indicate that the dozens of CVs per cluster expected by theoretical arguments are being found. The findings to date also suggest that the ratio of CVs to other types of X-ray sources is remarkably similar in clusters of very different structural parameters.
As part of our campaign to determine the nature of the various source populations of the low-luminosity globular cluster X-ray sources, we have obtained a Chandra X-Ray Observatory ACIS-S3 image of the globular cluster NGC 6440. We detect 24 sources to a limiting luminosity of $2 Â 10 31 ergs s À1 (0.5-2.5 keV) inside the cluster's half-mass radius, all of which lie within $2 core radii of the cluster center. We also find excess emission in and around the core that could be due to unresolved point sources. Based on X-ray luminosities and colors, we conclude that there are 4-5 likely quiescent low-mass X-ray binaries and that most of the other sources are cataclysmic variables. We compare these results to Chandra results from other globular clusters and find the X-ray luminosity functions differ among the clusters.
We report on the Chandra X-Ray Observatory ACIS-S3 imaging observation of the Galactic globular cluster M4 (NGC 6121). We detect 12 X-ray sources inside the core and 19 more within the cluster half-mass radius. The limiting luminosity of this observation is L X % 10 29 ergs s À1 for sources associated with the cluster, the deepest X-ray observation of a globular cluster to date. We identify six X-ray sources with known objects and use ROSAT observations to show that the brightest X-ray source is variable. Archival data from the Hubble Space Telescope allow us to identify optical counterparts to 16 X-ray sources. Based on the X-ray and optical properties of the identifications and the information from the literature, we classify two (possibly three) sources as cataclysmic variables, one X-ray source as a millisecond pulsar, and 12 sources as chromospherically active binaries. Comparison of M4 with 47 Tuc and NGC 6397 suggests a scaling of the number of active binaries in these clusters with the cluster (core) mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.