High stable nickel nanoparticles (NiNPs) have been successfully synthesized from nickel chloride as the precursor through a simple one-pot solvothermal process. A systematic investigation of the reaction parameters, namely, effects of reaction temperature, pH of precursor solution, the concentration of reactants, and reaction time on the formation of NiNPs, was carried out to obtain the optimal values for the synthesis. The optimum reaction temperature, pH, NiCl2·6H2O concentration, and reaction time are 190°C, pH 9, 0.1 M, and 24 h. The characteristic peaks of NiNPs have been confirmed by the Fourier transformer infra-red and surface plasmon resonance, with the presence of –OH stretching bands at 3,593 and 603 cm−1 (interaction with Ni and NiO) and λ
max 265 nm, respectively. The X-ray diffraction and transmission electron microscope demonstrated the particle size of about 24 nm (by Scherrer) and 49 nm (Image-J), respectively, with the face center cubic phase. The synthesized NiNPs showed good stability, where the degradation of NiNPs was completed at 800°C with more than 97% residue as depicted by the thermogravimetry analysis. The synthesized NiNPs can be used as fillers to enhance the thermal, mechanical, and electrical properties of polymeric materials.
ABSTRACT:A simplified Hummer's method was successfully used in synthesising graphene oxide nanoplatelets. These nanoplatelets were synthesised at room temperature at various processing times (24 h, 72 h, and 120 h). Ultraviolet visible spectroscopy (UVvis) showed that all synthesised graphene oxide nanoplatelets suspensions have similar broad shoulder absorbance at a wavelength of 300 nm. Furthermore, similar functional groups were detected by Fourier transform infrared spectroscopy (FTIR) across all types of graphene oxide nanoplatelets structures. The effect of processing time on the thickness of the sheet size was interpreted through topology using atomic force microscopy (AFM). The structural properties of graphene oxide nanoplatelets were evaluated using X-ray diffraction (XRD). The results showed a slight increase in the interlayer spacing with no sharp distinction in the crystallinity for graphene oxide nanoplatelets at longer processing times. The ratio of carbon to oxygen composition on the surface of each synthesised graphene oxide nanoplatelet was computed using the X-ray photoelectron spectroscopy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.