Opioid-associated environmental stimuli elicit robust immune-altering effects via stimulation of a neural circuitry that includes the basolateral amygdala and nucleus accumbens. These brain regions are known to have both direct and indirect connections with the hippocampus. Thus, the present study evaluated whether the dorsal hippocampus (DH), and more specifically interleukin-1 beta (IL-1β) within the DH, is necessary for the expression of heroin-induced conditioned immunomodulation. Rats received five Pavlovian pairings of systemic heroin administration (1.0 mg/kg, SC) with placement into a distinct environment (conditioned stimulus, CS). Six days after conditioning, a GABAA/B agonist cocktail or IL-1β small interfering RNA (siRNA) was microinfused into the DH to inhibit neuronal activity or IL-1β gene expression prior to CS or home cage exposure. Control animals received saline or negative control siRNA microinfusions. Furthermore, all rats received systemic administration of lipopolysaccharide (LPS) to stimulate proinflammatory nitric oxide production. CS exposure suppressed LPS-induced nitric oxide production relative to home cage exposure. Inactivation of, or IL-1β silencing in, the DH disrupted the CS-induced suppression of nitric oxide production relative to vehicle or negative control siRNA treatment. These results are the first to show a role for DH IL-1β expression in heroin-conditioned suppression of a proinflammatory immune response.
Heroin administration suppresses the production of inducible nitric oxide (NO), as indicated by changes in splenic inducible nitric oxide synthase (iNOS) and plasma nitrate/nitrite. Since NO is a measure of host defense against infection and disease, this provides evidence that heroin can increase susceptibility to pathogens by directly interacting with the immune system. Previous research in our laboratory has demonstrated that these immunosuppressive effects of heroin can also be conditioned to environmental stimuli by repeatedly pairing heroin administration with a unique environmental context. Re-exposure to a previously drug-paired context elicits immunosuppressive effects similar to heroin administration alone. In addition, our laboratory has reported that the basolateral amygdala (BLA) and medial nucleus accumbens shell (mNAcS) are critical neural substrates that mediate this conditioned effect. However, our understanding of the contributing mechanisms within these brain regions is limited. It is known that the cytokine interleukin-1 (IL-1) plays an important role in learning and memory. In fact, our laboratory has demonstrated that inhibition of IL-1β expression in the dorsal hippocampus (DH) prior to reexposure to a heroin-paired context prevents the suppression of measures of NO production. Therefore, the present studies sought to further investigate the role of IL-1 in heroin-conditioned immunosuppression. Blockade of IL-1 signaling in the BLA, but not in the caudate putamen or mNAcS, using IL-1 receptor antagonist (IL-1Ra) attenuated heroin-conditioned immunosuppression of NO production as measured by plasma nitrate/nitrite and iNOS mRNA expression in spleen tissue. Taken together, these findings suggest that IL-1 signaling in the BLA is necessary for the expression of heroin-conditioned immunosuppression of NO production and may be a target for interventions that normalize immune function in heroin users and patient populations exposed to opiate regimens.
Opioid users experience increased incidence of infection, which may be partially attributable to both direct opiate-immune interactions and conditioned immune responses. Previous studies have investigated the neural circuitry governing opioid conditioned immune responses, but work remains to elucidate the mechanisms mediating this effect. Our laboratory has previously shown that hippocampal IL-1 signaling, specifically, is required for the expression of heroin conditioned immunosuppression following learning. The current studies were designed to further characterize the role of hippocampal IL-1 in this phenomenon by manipulating IL-1 during learning. Experiment 1 tested whether hippocampal IL-1 is also required for the acquisition of heroin conditioned immunosuppression, while Experiment 2 tested whether hippocampal IL-1 is required for the expression of unconditioned heroin immunosuppression. We found that blocking IL-1 signaling in the dorsal hippocampus with IL-1RA during each conditioning session, but not on interspersed non-conditioning days, significantly attenuated the acquisition of heroin conditioned immunosuppression. Strikingly, we found that the same IL-1RA treatment did not alter unconditioned immunosuppression to a single dose of heroin. Thus, IL-1 signaling is not a critical component of the response to heroin but rather may play a role in the formation of the association between heroin and the context. Collectively, these studies suggest that IL-1 signaling, in addition to being involved in the expression of a heroin conditioned immune response, is also involved in the acquisition of this effect. Importantly, this effect is likely not due to blocking the response to the unconditioned stimulus since IL-1RA did not affect heroin’s immunosuppressive effects.
Dopamine receptor stimulation is critical for heroin-conditioned immunomodulation; however, it is unclear whether the ventral tegmental area (VTA) contributes to this phenomenon. Hence, rats received repeated pairings of heroin with placement into a distinct environmental context. At test, they were re-exposed to the previously heroin-paired environment followed by systemic lipopolysaccharide treatment to induce an immune response. Bilateral GABA agonist-induced neural inactivation of the anterior, but not the posterior VTA, prior to context re-exposure inhibited the ability of the heroin-paired environment to suppress peripheral nitric oxide and tumor necrosis factor-α expression, suggesting a role for the anterior VTA in heroin-conditioned immunomodulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.