Ochrobactrum anthropi is resistant to most cephalosporins and penicillins due, at least in part, to the inducible expression of a single beta-lactamase. The beta-lactamase gene has been cloned and sequenced. It encodes an AmpC-type class 1 serine active-site enzyme that hydrolyses mainly cephalosporins and is resistant to inhibition by clavulanic acid. Expression of the ampC gene is inducible via a typical AmpR regulator, which is encoded upstream of ampC. Inducible expression is retained following cloning of O. anthropi ampR-ampC into Escherichia coli, confirming that the signal for AmpR activation in O. anthropi is the same as that used in the Enterobacteriaceae. This is the first reported example of an AmpC beta-lactamase outside of the gamma-subdivision of the bacterial kingdom. Genomic searches of other non-gamma-subdivision bacteria revealed a homologous ampR-ampC cluster in the plant symbiont, Sinorhizobium meliloti.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.