A concerted, allosteric model is developed, and equations are derived for quantitative interpretation of the kinetic and equilibrium binding data of rabbit muscle pyruvate kinase at pH 7.5 and 23 degrees C. The simplest model which seems likely to rationalize the experimental data involves two conformational states. In this model, two simplifying assumptions are made. First, the affinities of pyruvate kinase for both substrate and inhibitor are assumed to depend only upon the conformational state of the tetrameric enzyme. Second, the rate of product formation is also assumed to depend only upon the enzyme conformation. All types of experimental data are analyzed simultaneously to estimate the parameters which best predict the total body of experimental results. The fitted parameters indicate that the intrinsic allosteric equilibrium favors the active (R) state by 11 to 1. The substrate phosphoenolpyruvate binds preferentially, by a factor of 10, to the R state, whereas the inhibitor Phe has about 23 times higher affinity for the inactive (T) state. In all cases tested, the calculated values are in good agreement with the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.