Variations across cells, modules, packs, and vehicles can cause significant errors in the state estimation of LIBs using machine learning algorithms, especially when trained with small datasets. Training with large datasets that account for all variations is often impractical due to resource and time constraints at initial product release. To address this issue, we proposed a novel architecture that leverages electronic control units, edge computers, and the cloud to detect unrevealed variations and abnormal degradations in LIBs. The architecture comprised a generalized deep neural network (DNN) for generalizability, a personalized DNN for accuracy within a vehicle, and a detector. We emphasized that a generalized DNN trained with small datasets must show reasonable estimation accuracy during cross validation, which is critical for real applications before online training. We demonstrated the feasibility of the architecture by conducting experiments on 65 DNN models, where we found distinct hyperparameter configurations. The results showed that the personalized DNN achieves a root mean square error (RMSE) of 0.33%, while the generalized DNN achieves an RMSE of 4.6%. Finally, the Mahalanobis distance was used to consider the SOH differences between the generalized DNN and personalized DNN to detect abnormal degradations.
In various full HD video applications, high-level image enhancement requires localization of overlay text. In this paper, we propose text localization that uses a region-shrinking multistep process to achieve both high accuracy and fast processing in full HD videos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.