A ruthenium-catalyzed, redox neutral C-O bond cleavage of 2-aryloxy-1-arylethanols was developed that yields cleavage products in 62-98% isolated yield. This reaction is applicable to breaking the key ethereal bond found in lignin-related polymers. The bond transformation proceeds by a tandem dehydrogenation/ reductive ether cleavage. Initial mechanistic investigations indicate that the ether cleavage is most likely an organometallic C-O activation. A catalytic depolymerization of a lignin-related polymer quantitatively yields the corresponding monomer with no added reagent.
Citric acid is a widely used surface-modifying ligand for growth and processing of a variety of nanoparticles; however, the inability to easily prepare derivatives of this molecule has restricted the development of versatile chemistries for nanoparticle surface functionalization. Here, we report the design and synthesis of a citric acid derivative bearing an alkyne group and demonstrate that this molecule provides the ability to achieve stable, multidentate carboxylate binding to metal oxide nanoparticles, while also enabling subsequent multistep chemistry via the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The broad utility of this strategy for the modular functionalization of metal oxide surfaces was demonstrated by its application in the CuAAC modification of ZnO, Fe(2)O(3), TiO(2), and WO(3) nanoparticles.
While ZnO has excellent electrical properties, it has not been widely used for dye-sensitized solar cells, in part because ZnO is chemically less stable than widely used TiO(2). The functional groups typically used for surface passivation and for attaching dye molecules either bind weakly or etch the ZnO surface. We have compared the formation of molecular layers from alkane molecules with terminal carboxylic acid, alcohol, amine, phosphonic acid, or thiol functional groups on single-crystal zinc oxide (1010) surfaces. Atomic force microscopy (AFM) images show that alkyl carboxylic acids etch the surface whereas alkyl amine and alkyl alcohols bind only weakly on the ZnO(1010) surface. Phosphonic acid-terminated molecules were found to bind to the surface in a heterogeneous manner, forming clusters of molecules. Alkanethiols were found to bind to the surface, forming highly uniform monolayers with some etching detected after long immersion times in an alkanethiol solution. Monolayers of hexadecylphosphonic acid and octadecanethiol were further analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. AFM scratching shows that thiols were bound strongly to the ZnO surface, suggesting the formation of strong Zn-S covalent bonds. Surprisingly, the tridentate phosphonic acids adhered much more weakly than the monodentate thiol. The influence of organic grafting on the charge transfer to ZnO was studied by time-resolved surface photovoltage measurements and electrochemical impedance measurements. Our results show that the grafting of thiols to ZnO leads to robust surfaces and reduces the surface band bending due to midgap surface states.
We demonstrate the use of "click" chemistry to form electrochemically and photoelectrochemically active molecular interfaces to SnO(2) nanoparticle thin films. By using photochemical grafting to link a short-chain alcohol to the surface followed by conversion to a surface azide group, we enable use of the Cu(I)-catalyzed azide-alkyne [3 + 2] cycloaddition (CuAAC) reaction, a form of "click" chemistry, on metal oxide surfaces. Results are shown with three model compounds to test the surface chemistry and subsequent ability to achieve electrochemical and photoelectrochemical charge transfer. Surface-tethered ferrocene groups exhibit good electron-transfer characteristics with thermal rates estimated at >1000 s(-1). Time-resolved surface photovoltage measurements using a ruthenium terpyridyl coordination compound demonstrate photoelectron charge transfer on time scales of nanoseconds or less, limited by the laser pulse width. The results demonstrate that the CuAAC "click" reaction can be used to form electrochemically and photoelectrochemically active molecular interfaces to SnO(2) and other metal oxide semiconductors.
Metal oxides play a key role in many emerging applications in renewable energy, such as dye-sensitized solar cells and photocatalysts. Because the separation of charge can often be facilitated at junctions between different materials, there is great interest in the formation of heterojunctions between metal oxides. Here, we demonstrate use of the copper-catalyzed azide-alkyne cycloaddition reaction, widely referred to as "click" chemistry, to chemically assemble photoactive heterojunctions between metal oxide nanoparticles, using WO(3) and TiO(2) as a model system. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy verify the nature and selectivity of the chemical linkages, while scanning electron microscopy reveals that the TiO(2) nanoparticles form a high-density, conformal coating on the larger WO(3) nanoparticles. Time-resolved surface photoresponse measurements show that the resulting dyadic structures support photoactivated charge transfer, while measurements of the photocatalytic degradation of methylene blue show that chemical grafting of TiO(2) nanoparticles to WO(3) increases the photocatalytic activity compared with the bare WO(3) film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.