Soxhlet extraction which is also known as solvent extraction refers to the preferential dissolution of oil by contacting oilseeds with a liquid solvent. This is the most efficient method to recover oil from oilseeds, thus solvent extraction using hexane has been commercialized as a standard practice in today’s industry. In this study, soxhlet extraction had been used to extract the rubber seed oil which contains high percentage of alpha-linolenic acid. In addition, the different solvents will be used for the extraction of rubber seed oil such as petroleum ether, n-hexane, ethanol and water to study the best solvent to extract the rubber seed oil so the maximum oil yield can be obtained. On the other hands, the natural resource, rubber belongs to the family of Euphorbiaceae, the genus is Hevea while the species of rubber is brasiliensis. Rubber (Hevea brasiliensis) seeds are abundant and wasted because they had not been used in any industry or applications in daily life. The oil of rubber seeds had been found that contained a significant percentage of long chain polyunsaturated fatty acids especially alpha-linolenic acid (ALA). Alpha-linolenic acid is one of the important elements of omega-3 fatty acids which play important roles in human metabolism, not only playing structural roles in phospholipid bilayers but also acting as precursors to bioactive molecules. Moreover, rubber seed oil also contains a high percentage of oleic acid and linoleic acid, these all are valuable compounds. Thus, rubber seed oil can be regarded as a plant derived oleic-linolenic acid. Rubber seeds can be considered as good sources for human food, animal feed and biofuel with its high content of fat, protein, amino acids and fatty acids. Therefore, it is important to study the method of extraction to extract the valuable components from rubber seeds, purify the extracted seed oil, so that the rubber seeds oil can be utilized into difference industries pharmaceutical, food, oleochemical and cosmetics.
The objective of this study is to verify potential of various types of microorganisms during spray drying and non-refrigerated storage that can be enhanced substantially by selecting suitable protective colloids. Four selected probiotics tested are Lactbacillus plantarum B13 and B18, which are the bacteria probiotics and Kluyveromyces lactis and Saccharomyces blouradii, non-bacteria probiotics. Two levels of experiment occur starting with formulation study of encapsulation agent followed by the viability study of different probiotics after spray dry and two weeks nonrefrigerated storage. The formulation of 30% of gum Arabic, 15% of gelatin and 45% of coconut oil can homogenize well at least for two hours and can produce acceptable dried product (below 4% of moisture content) at low outlet temperature (70℃ -75℃). K. lactis, S. blouradii gives 2.57% and 2.4% of viability percentage after spray drying process and 25.84% and 2.04% after two weeks nonrefrigerated storage respectively. The colonies of non-probiotics bacteria after both conditions are between 1010 and 106 cfu/mL which is among the accepted level for industrial application. However, the survival of probiotics in a spray-dried form during non-refrigerated storage is higher at low of moisture content compared to others.
The formulation of omega-3 emulsion using rubber (Hevea Brasiliensis) seed oil based on the best performance of the emulsion in terms of higher viscosity, smaller droplet size, lower moisture content and slightly acidic pH value supported by degree of creaming in varying the type and composition of emulsifier used. Rubber seed oil contains significant value of alpha-linolenic acid which plays an important role in maintaining human health. Therefore, formulation of rubber seed oil emulsion is important to become a new source of omega-3 emulsion instead of fish oil. Rubber seed oil was mixed with distilled water and nonionic emulsifier which were lecithin and span 80 by homogenizer. From the analysis conducted, the best formulation was the emulsion with 50% of distilled water, 6% of lecithin and 47% of rubber seed oil.
Synthetic oil is often the choice of commercial for use in cosmetics especially lipsticks due to the lower cost of production. Meanwhile, the natural oil in comparison with synthetic oil is non-toxic and safe to apply in cosmetic. In addition, polyunsaturated fatty acids (PUFAs) play an important role in lipsticks by giving the smooth feels when apply to the lips and also help to repair the dry lips. In this study, rubber (Hevea brasiliensis) seeds which are abundant and discarded as waste in Malaysia had been discovered to contain a significant value of alpha-linolenic acid (ALA). The method used to extract rubber seeds oil (RSO) is supercritical carbon dioxide (SC-CO2), a green technique to ensure the extracted RSO is free from organic solvent with better quality and safe to be consumed. Furthermore, the effect of temperature and pressure of the extraction was studied to obtain the optimum yield of rubber seeds oil. Lastly, the experiments of Fourier Transform Infrared (FTIR) were performed to samples of lipsticks with or without RSO. The results obtained show that the presence of polyunsaturated fatty acids is stable in the lipmoist samples after 8 weeks of storage.
Bioactive compound is an important component in health care to a majority of the world’s population. Virgin Coconut (Cocos nucifera) oil is used in Southeast Asia for treating various diseases and is well-known of its rich nutrients. In this study, supercritical fluid extraction (SFE), an environmental friendly technique was used to extract the interest compounds from crude virgin coconut. The extracted virgin coconut oil is free from organic solvent and safe to be consumed. This is because the solvent used in the extraction process is carbon dioxide which is inert and no solvent residue inside the extracted oil. The layout of the experiment was developed via Statistica 8.0 using the Box-Behnken experimental design model. The oil yield, antioxidant activity and total phenolic content were calculated while the comparison of the experimental results and the statistical data was done using response surface methodology (RSM). Therefore, the optimum conditions of temperature and pressure for the extraction of virgin coconut oil was obtained through the statistical study which is 47°C and 20MPa respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.