Maternal exposure to increased synthetic glucocorticoids (GC) during pregnancy is known to disturb fetal development and increase the risk of long-term disease. Maternal exposure to elevated levels of natural GC is likely to be common yet is relatively understudied. The placenta plays an important role in regulating fetal exposure to maternal GC but is itself vulnerable to maternal insults. This study uses a mouse model of maternal corticosterone (Cort) exposure to investigate its effects on the developing placenta. Mice were treated with Cort (33 μg/kg·h) for 60 h starting at embryonic d 12.5 (E12.5) before collection of placentas at E14.5 and E17.5. Although Cort exposure did not affect fetal size, placentas of male fetuses were larger at E17.5 in association with changes in placental Igf2. This increase in size was associated with an increase in placental thickness and an increase in placental junctional zone volume. Placentas from female fetuses were of normal size and had no changes in growth factor mRNA levels. The expression of the protective enzyme 11β-hydroxysteroid dehydrogenase type 2 was increased at E14.5 but was decreased in males at E17.5. In contrast, the expression of Nr3c1 (which encodes the GC receptor) was increased during the Cort exposure and remained elevated at E17.5 in the placentas of male fetuses. Our study has shown that maternal Cort exposure infers a sex-specific alteration to normal placental growth and growth factor expression, thus further adding to our understanding of the mechanisms of male dominance of programmed disease.
Exposure to excess glucocorticoids programs susceptibility to cardiovascular and renal dysfunction in later life although the mechanisms have not been clearly elucidated. We administered corticosterone (CORT; 33 μg·kg(-1)·h(-1)) to pregnant mice for 60 h from embryonic day (E) 12.5. Prenatal CORT resulted in postnatal growth restriction and reduced nephron endowment at postnatal day 30 in both male and female offspring. The reduction in nephron number was associated with increased expression of apoptotic markers in the kidney at E14.5. In offspring of both sexes at 12 mo of age, there were no differences in kidney weights, urine output, or urinary sodium excretion; however, prenatal CORT exposure increased the urinary albumin/creatinine ratio and 24-h urinary albumin excretion. Surprisingly, at 12 mo male but not female offspring exposed to prenatal CORT were hypotensive, with mean arterial blood pressures ∼10 mmHg lower than untreated controls (P < 0.001). Finally, we examined how offspring responded to a renal or cardiovascular challenge (saline load or restraint stress). When given 0.9% NaCl as drinking water for 7 days, there were no differences in blood pressures or urinary parameters between groups. Restraint stress (15 min) caused a tachycardic response in all animals; however the increase in heart rate was not sustained in male offspring exposed to CORT (P < 0.01), suggesting that autonomic control of cardiovascular function may be altered. These data demonstrate that excess prenatal CORT impairs kidney development and increases the risk of cardiovascular dysfunction especially in males.
Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5) on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX) exposed fetuses were growth restricted compared to saline treated controls (SAL) at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ∼3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.
Maternal perturbations or sub-optimal conditions during development are now recognized as contributing to the onset of many diseases manifesting in adulthood. This "developmental programming" of disease has been explored using animal models allowing insights into the potential mechanisms involved. Impaired renal development, resulting in a low nephron number, has been identified as a common outcome that is likely to contribute to the development of hypertension in the offspring as adults. Changes in other organs and systems, including the heart and the hypothalamic–pituitary–adrenal axis, have also been found. Evidence has recently emerged suggesting that epigenetic changes may occur as a result of developmental programming and result in permanent changes in the expression patterns of particular genes. Such epigenetic modifications may be responsible not only for an increased susceptibility to disease for an individual, but indirectly for the establishment of a disease state in a subsequent generation. Further research in this field, particularly examination as to whether epigenetic changes to genes affecting kidney development do occur, are essential to understanding the underlying mechanisms of developmental programming of disease.
Short‐term maternal corticosterone (Cort) administration at mid‐gestation in the mouse reduces nephron number in both sexes while programming renal and cardiovascular dysfunction in 12‐month male but not female offspring. The renal renin–angiotensin–aldosterone system (RAAS), functions in a sexually dimorphic manner to regulate both renal and cardiovascular physiology. This study aimed to identify if there are sex‐specific differences in basal levels of the intrarenal RAAS and to determine the impact of maternal Cort exposure on the RAAS in male and female offspring at 6 months of age. While intrarenal renin concentrations were higher in untreated females compared to untreated males, renal angiotensin II concentrations were higher in males than females. Furthermore, basal plasma aldosterone concentrations were greater in females than males. Cort exposed male but not female offspring had reduced water intake and urine excretion. Cort exposure increased renal renin concentrations and elevated mRNA expression of Ren1, Ace2, and Mas1 in male but not female offspring. In addition, male Cort exposed offspring had increased expression of the aldosterone receptor, Nr3c2 and renal sodium transporters. In contrast, Cort exposure increased Agtr1a mRNA levels in female offspring only. This study demonstrates that maternal Cort exposure alters key regulators of renal function in a sex‐specific manner at 6 months of life. These finding likely contribute to the disease outcomes in male but not female offspring in later life and highlights the importance of renal factors other than nephron number in the programming of renal and cardiovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.