The NCCN Guidelines for Kidney Cancer focus on the screening, diagnosis, staging, treatment, and management of renal cell carcinoma (RCC). Patients with relapsed or stage IV RCC typically undergo surgery and/or receive systemic therapy. Tumor histology and risk stratification of patients is important in therapy selection. The NCCN Guidelines for Kidney Cancer stratify treatment recommendations by histology; recommendations for first-line treatment of ccRCC are also stratified by risk group. To further guide management of advanced RCC, the NCCN Kidney Cancer Panel has categorized all systemic kidney cancer therapy regimens as “Preferred,” “Other Recommended Regimens,” or “Useful in Certain Circumstances.” This categorization provides guidance on treatment selection by considering the efficacy, safety, evidence, and other factors that play a role in treatment selection. These factors include pre-existing comorbidities, nature of the disease, and in some cases consideration of access to agents. This article summarizes surgical and systemic therapy recommendations for patients with relapsed or stage IV RCC.
Purpose To develop and evaluate an examination consisting of magnetic resonance (MR) fingerprinting-based T1, T2, and standard apparent diffusion coefficient (ADC) mapping for multiparametric characterization of prostate disease. Materials and Methods This institutional review board-approved, HIPAA-compliant retrospective study of prospectively collected data included 140 patients suspected of having prostate cancer. T1 and T2 mapping was performed with fast imaging with steady-state precession-based MR fingerprinting with ADC mapping. Regions of interest were drawn by two independent readers in peripheral zone lesions and normal-appearing peripheral zone (NPZ) tissue identified on clinical images. T1, T2, and ADC were recorded for each region. Histopathologic correlation was based on systematic transrectal biopsy or cognitively targeted biopsy results, if available. Generalized estimating equations logistic regression was used to assess T1, T2, and ADC in the differentiation of (a) cancer versus NPZ, (b) cancer versus prostatitis, (c) prostatitis versus NPZ, and (d) high- or intermediate-grade tumors versus low-grade tumors. Analysis was performed for all lesions and repeated in a targeted biopsy subset. Discriminating ability was evaluated by using the area under the receiver operating characteristic curve (AUC). Results In this study, 109 lesions were analyzed, including 39 with cognitively targeted sampling. T1, T2, and ADC from cancer (mean, 1628 msec ± 344, 73 msec ± 27, and 0.773 × 10 mm/sec ± 0.331, respectively) were significantly lower than those from NPZ (mean, 2247 msec ± 450, 169 msec ± 61, and 1.711 × 10 mm/sec ± 0.269) (P < .0001 for each) and together produced the best separation between these groups (AUC = 0.99). ADC and T2 together produced the highest AUC of 0.83 for separating high- or intermediate-grade tumors from low-grade cancers. T1, T2, and ADC in prostatitis (mean, 1707 msec ± 377, 79 msec ± 37, and 0.911 × 10 mm/sec ± 0.239) were significantly lower than those in NPZ (P < .0005 for each). Interreader agreement was excellent, with an intraclass correlation coefficient greater than 0.75 for both T1 and T2 measurements. Conclusion This study describes the development of a rapid MR fingerprinting- and diffusion-based examination for quantitative characterization of prostatic tissue. RSNA, 2017 Online supplemental material is available for this article.
Purpose To evaluate in a multi-institutional study whether radiomic features useful for prostate cancer (PCa) detection from 3 Tesla (T) multi-parametric MRI (mpMRI) in the transition zone (TZ) differ from those in the peripheral zone (PZ). Materials and Methods 3T mpMRI, including T2-weighted (T2w), apparent diffusion coefficient (ADC) maps, and dynamic contrast-enhanced MRI (DCE-MRI), were retrospectively obtained from 80 patients at three institutions. This study was approved by the institutional review board of each participating institution. First-order statistical, co-occurrence, and wavelet features were extracted from T2w MRI and ADC maps, and contrast kinetic features were extracted from DCE-MRI. Feature selection was performed to identify ten features for PCa detection in the TZ and PZ, respectively. Two logistic regression classifiers used these features to detect PCa and were evaluated by area under the receiver-operating characteristic curve (AUC). Classifier performance was compared with a zone-ignorant classifier. Results Radiomic features that were identified as useful for PCa detection differed between TZ and PZ. When classification was performed on a per-voxel basis, a PZ-specific classifier detected PZ tumors on an independent test set with significantly higher accuracy (AUC = 0.61-0.71) than a zone-ignorant classifier trained to detect cancer throughout the entire prostate (p<0.05). When classifiers were evaluated on MRI data from multiple institutions, statistically similar AUC values (p > 0.14) were obtained for all institutions. Conclusions A zone-aware classifier significantly improves the accuracy of cancer detection in the PZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.