Aging in rats is associated with a loss of hippocampal neurons, which may contribute to age‐related cognitive deficits. Several lines of evidence suggest that stress and glucocorticoids may contribute to age‐related declines in hippocampal neuronal number. Excitatory amino acids (EAAs) have been implicated in the glucocorticoid endangerment and stress‐induced morphological changes of hippocampal neurons of young rats. Previously, we have reported that acute immobilization stress can increase extracellular concentrations of the endogenous excitatory amino acid, glutamate, in the hippocampus. The present study examined the effect of an acute bout of immobilization stress on glutamate levels in the hippocampus and medial prefrontal cortex of young (3–4‐month) and aged (22–24‐month) Fischer 344 rats. In addition, the effect of stress on spectrin proteolysis in these two brain regions was also examined. Spectrin is a cytoskeleton protein that contributes to neuronal integrity and proteolysis of this protein has been proposed as an important component of EAA‐induced neuronal death. There was no difference in basal glutamate levels between young and old rats in the hippocampus or medial prefrontal cortex. During the period of restraint stress a modest increase in glutamate levels in the hippocampus of young and aged rats was observed. After the termination of the stress procedure, hippocampal glutamate concentrations continued to rise in the aged rats, reaching a level approximately five times higher than the young rats, and remained elevated for at least 2 h after the termination of the stress. A similar pattern was also observed in the medial prefrontal cortex with an augmented post‐stress‐induced glutamate response observed in the aged rats. There was no increase in spectrin proteolysis in the hippocampus or medial prefrontal cortex of young or aged rats after stress or under basal nonstress conditions. The enhanced poststress glutamate response in the aged rats may contribute to the increased sensitivity of aged rats to neurotoxic insults.
These data indicate that simvastatin reduced plasma and biliary cholesterol levels primarily by reducing cholesterol synthesis. The reduction in CBD bile lithogenicity and bile acid hydrophobicity by simvastatin suggests that this agent may be useful for people who have early stages of cholesterol gallstone development and in whom a choleretic effect is required.
Glucocorticoids have been shown to exacerbate the damaging effects of a variety of neurotoxic insults in the hippocampus and other brain areas. Evidence suggests that the endangering effects of glucocorticoids may be due to augmenting the cascade of events, such as elevations in intracellular calcium levels, because of excitatory amino acid (EAA) receptor stimulation. A potential mechanism responsible for EAA‐induced neuronal damage is activation of calcium‐sensitive proteases, such as calpain, which then proteolytically degrade cytoskeleton structural proteins, such as spectrin. The present study was designed to determine if glucocorticoids can regulate the spectrin proteolysis produced by the EAA agonist, kainic acid. Rats were adrenalectomized (ADX) or sham operated and 7 days later injected with kainic acid (10 mg/kg). Twenty‐four hours later rats were killed and tissues obtained for western blot analyses of the intact spectrin molecule and the proteolytically derived breakdown products. Kainic acid produced an approximate sevenfold increase in the 145–155‐kDa spectrin breakdown products in the hippocampus relative to ADX or sham rats injected with vehicle. ADX attenuated the kainic acid‐induced increase in breakdown products by 43%. In a similar way, kainic acid produced a large 10‐fold increase in spectrin breakdown products in the frontal cortex, which was also significantly attenuated (−80%) by ADX. Induction of heat shock protein 70 (hsp70) by neurotoxic insults has been suggested to be a sensitive indicator of cellular stress in neurons. Kainic acid induced large amounts of hsp70 in both hippocampus and frontal cortex of sham‐operated rats that was markedly attenuated (85–95%) by ADX. There was a strong positive correlation between the amount of spectrin proteolysis and the degree of hsp70 induction in both the hippocampus and frontal cortex. In contrast, kainic acid did not significantly produce spectrin proteolysis and induced only a very modest and inconsistent increase of hsp70 in the hypothalamus. This is consistent with the observation that the hypothalamus is relatively insensitive to the neurotoxic effects of systemically administered kainic acid. The dose of kainic acid (10 mg/kg) used in this experiment produces a 10‐fold elevation in circulating corticosterone levels at both 1 and 3 h after administration. These results suggest that part of the endangering effects of glucocorticoids on hippocampal and cortical neurons may be due to augmentation of calpain‐induced spectrin proteolysis. The attenuation of kainic acid‐induced synthesis of hsp70 by ADX indicates that the cellular stress produced by EAAs is regulated in part by glucocorticoids. In addition, the elevation in endogenous corticosterone levels produced by kainic acid appears to be a significant factor contributing to the neuronal damage produced by this agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.