TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.
Highlights d AMPK and FLCN regulate TFEB/TFE3-mediated innate immunity and pathogen resistance d Loss of FLCN or activation of AMPK induces TFEB/TFE3dependent pro-inflammatory profile d FLCN depletion in macrophages enhances their energy metabolism and phagocytosis d LPS treatment induces acute ATP reduction followed by AMPK and TFEB activation
TFEB and TFE3 are transcriptional regulators of the innate immune response, but the mechanisms regulating their activation upon pathogen infection are poorly elucidated. Using C. elegans and mammalian models, we report that the master metabolic modulator 5'-AMPactivated protein kinase (AMPK) and its negative regulator Folliculin (FLCN) act upstream of TFEB/TFE3 in the innate immune response, independently of the mTORC1 signaling pathway.In nematodes, loss of FLCN or overexpression of AMPK conferred pathogen resistance via activation of TFEB/TFE3-dependent antimicrobial genes, while ablation of total AMPK activity abolished this phenotype. Similarly, in mammalian cells, loss of FLCN or pharmacological activation of AMPK induced TFEB/TFE3-dependent pro-inflammatory cytokine expression.Importantly, a rapid reduction in cellular ATP levels in murine macrophages was observed upon lipopolysaccharide (LPS) treatment accompanied by an acute AMPK activation and TFEB nuclear localization. These results uncover an ancient, highly conserved and pharmacologically actionable mechanism coupling energy status with innate immunity. translocation ( Figure 3E). These findings suggest that loss of FLCN drives HLH-30/TFEB/TFE3
Despite recent advances in chemotherapy, aggressive and metastatic breast cancers remain refractory to targeted therapy and the development of novel drugs is urgently needed. Retinoids are crucial regulators of cellular proliferation, differentiation, and cell death, and have shown potent chemotherapeutic and chemopreventive properties. The major drawback of the use of all-trans retinoic acid (ATRA) in cancer therapy is disease relapse. Therefore, synthetic retinoids, specifically ST1926, have emerged as potent anticancer agents. Given the importance of the microenvironment in modulating the response of cancer cells to chemotherapeutic drugs, we investigated the antitumor activities of ST1926 in two-dimensional (2D) and different three-dimensional (3D) human breast cancer models and compared them with ATRA. We have shown that in 2D cell culture models, ATRA-resistant MCF-7 and MDA-MB-231 cells were sensitive to ST1926 at submicromolar concentrations that spared the 'normal-like' breast epithelial cells. ST1926 induced apoptosis and S-phase arrest, caused DNA damage, and downregulated the Wnt/β-catenin pathway in breast cancer cells in 2D and 3D cell culture models. ST1926-mediated growth inhibition was independent of the retinoid receptor-signaling pathway. Long-term treatments with low submicromolar ST1926 concentrations reduced the anchorage-independent growth and decreased the sphere-forming ability of breast cancer progenitor cells in the sphere formation assay. Furthermore, ST1926 potently induced cell death of breast cancer cells under 3D conditions and spared the lumen-forming ability of normal-like breast epithelial cells. In tested 3D models, ATRA had minimal effects on the growth of breast cancer cells compared with ST1926. In summary, our results highlight the therapeutic potential of ST1926 in breast cancer and warrant its further clinical development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.