Aim: Conventional experimental approaches used for the evaluation of the proarrhythmic potential of compounds in the drug discovery process are expensive and time consuming but an integral element in the safety profile required for a new drug to be approved. The voltage-gated sodium ion channel 1.5 (Nav 1.5), a target known for arrhythmic drugs, causes adverse cardiac complications when the channel is blocked. Results: Machine learning classification and regression models were built to predict the possibility of blocking these channels by small molecules. The finalized models tested with balanced accuracies of 0.88, 0.93 and 0.94 at three thresholds (1, 10 and 30 µmol). The regression model built to predict the pIC50 of compounds had q2 of 0.84 (root-mean-square error = 0.46). Conclusion: The machine learning models that have been built can act as effective filters to screen out the potentially toxic compounds in the early stages of drug discovery.
IntroductionSkin sensitization forms a major toxicological endpoint for dermatology and cosmetic products. Recent ban on animal testing for cosmetics demands for alternative methods. We developed an integrated computational solution (SkinSense) that offers a robust solution and addresses the limitations of existing computational tools i.e. high false positive rate and/or limited coverage.ResultsThe key components of our solution include: QSAR models selected from a combinatorial set, similarity information and literature-derived sub-structure patterns of known skin protein reactive groups. Its prediction performance on a challenge set of molecules showed accuracy = 75.32%, CCR = 74.36%, sensitivity = 70.00% and specificity = 78.72%, which is better than several existing tools including VEGA (accuracy = 45.00% and CCR = 54.17% with ‘High’ reliability scoring), DEREK (accuracy = 72.73% and CCR = 71.44%) and TOPKAT (accuracy = 60.00% and CCR = 61.67%). Although, TIMES-SS showed higher predictive power (accuracy = 90.00% and CCR = 92.86%), the coverage was very low (only 10 out of 77 molecules were predicted reliably).ConclusionsOwing to improved prediction performance and coverage, our solution can serve as a useful expert system towards Integrated Approaches to Testing and Assessment for skin sensitization. It would be invaluable to cosmetic/ dermatology industry for pre-screening their molecules, and reducing time, cost and animal testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.