ABSTRACT:Constructing scientific explanations and participating in argumentative discourse are seen as essential practices of scientific inquiry (e.g., R. Driver, P. Newton, & J. Osborne, 2000). In this paper, we identify three goals of engaging in these related scientific practices: (1) sensemaking, (2) articulating, and (3) persuading. We propose using these goals to understand student engagement with these practices, and to design instructional interventions to support students. Thus, we use this framework as a lens to investigate the question: What successes and challenges do students face as they engage in the scientific practices of explanation and argumentation? We study this in the context of a curriculum that provides students and teachers with an instructional framework for constructing and defending scientific explanations. Through this analysis, we find that students consistently use evidence to make sense of phenomenon and articulate those understandings but they do not consistently attend to the third goal of persuading others of their understandings. Examining the third goal more closely reveals that persuading others of an understanding requires social interactions that are often inhibited by traditional classroom interactions. Thus, we conclude by proposing design strategies for addressing the social challenges inherent in the related scientific practices of explanation and argumentation.
Recent research and policy documents call for engaging students and teachers in scientific practices such that the goal of science education shifts from students knowing scientific and epistemic ideas, to students developing and using these understandings as tools to make sense of the world. This perspective pushes students to move beyond the rote performance of scientific actions or processes and engage instead in purposeful knowledge construction work. This raises parallel questions about how to go beyond characterizing student performance of scientific process to understand their engagement in scientific practices as a goal-directed activity. To that end, this article offers a framework-the Epistemologies in Practice (EIP) framework-for characterizing how students can engage meaningfully in scientific practices. This framework emphasizes two aspects of student engagement in scientific practices: (1) the students' epistemic goals for their knowledge construction work and (2) their epistemic understandings of how to engage in that work.
ABSTRACT:Argumentation is a central goal of science education because it engages students in a complex scientiÞc practice in which they construct and justify knowledge claims. Although there is a growing body of research around argumentation, there has been little focus on developing a learning progression for this practice. We describe a learning progression to understand both students' work in scientiÞc argumentation and the ways in which the instructional environment can support students in that practice. This learning progression describes three dimensions: (1) instructional context, (2) argumentative product, and (3) argumentative process. In this paper, we compare four examples from elementary, middle, and high school science classrooms to explore the ways in which students' arguments vary in complexity across grade level and instructional contexts. Our comparisons suggest that simplifying the instructional context may facilitate students in engaging in other aspects of argumentation in more complex ways. The instructional context may also be used as a tool to support students in argumentation in new content areas and to increase the complexity of their written arguments, which may be weaker than their oral arguments. Furthermore, classroom norms play an important role in supporting students of all ages, including elementary students, in argumentation.
In recent years, research on students' scientific argumentation has progressed to a recognition of nascent resources: Students can and do argue when they experience the need and possibility of persuading others who may hold competing views. Our purpose in this article is to contribute to this progress by applying the perspective of framing to the question of when and how a class forms and maintains a sense of their activity as argumentative. In particular, we examine three snippets from a sixth-grade class with respect to how the students-and the teacher-experience, or frame, what is taking place. We argue that they show dynamics of framing for individuals and for the class as a whole that affect and are affected by students' engagement in argumentation. We close the article with implications of this perspective for research, teaching, and instructional design. ß 2011 Wiley Periodicals, Inc. J Res Sci Teach 49: 2012
The Next Generation Science Standards (NGSS) [Achieve, Inc. []] represent a broad consensus that teaching and learning expectations must change. Rather than memorizing and reciting information, students are now expected to engage in science practices to develop a deep understanding of core science ideas. While we want to share in the optimism about NGSS, the standards are not a silver bullet for transforming science classrooms. They are, instead, another reform document designed to suggest opportunities for students to actively engage in knowledge construction themselves—to be doers of science, rather than receivers of facts. A foundational contradiction underlies these efforts—while we want students to do science, we seem to mean that students should mimic practices others have selected as important to learn, and content others have selected as foundational. As a result, students are rarely positioned with epistemic agency: the power to shape the knowledge production and practices of a community [Stroupe [] Science Education 98:487–516]. We argue that unless the field tackles significant questions around precisely how students can be active agents in knowledge construction, we will likely continue to implement learning environments that position students as receivers of scientific facts and practices, even as classrooms adopt NGSS. In this conceptual analysis article, we unpack the construct of “epistemic agency” and its relationship to the NGSS, using a vignette to illustrate how students are typically positioned in researcher‐developed curricula. The vignette, which describes a seventh‐grade class exploring which of two lakes is more at risk for invasion by the spiny water flea, provides an exemplar of what we take to be a loose consensus about learning environments consistent with the NGSS. However, when we look beneath the surface of the consensus, the vignette reveals contradictions and unresolved issues around epistemic agency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.