The mechanism of γ-Secretase dysfunction in familial Alzheimer diseaseMutations in presenilin (PSEN) and amyloid precursor protein (APP) cause dominant early-onset Alzheimer's disease (AD), but the mechanism involved is debated. Here, such mutations are shown to alter γ-secretase activity, leading to changes in Aβ peptide cleavage patterns.
Gamma-secretase, an aspartyl protease that belongs to the iCLiPs (intramembrane cleaving proteases) family, is a multiprotein complex that consists of presenilin (PS), nicastrin (NCT), Aph-1 and Pen-2 (ref. 1). It is responsible for generation of the beta-amyloid peptide (Abeta), the primary component of senile plaques in the brains of patients with Alzheimer's disease. Although the four components are necessary and sufficient for gamma-secretase activity, additional proteins are possibly involved in its regulation. Consequently, we purified proteins associated with the active gamma-secretase complex from reconstituted PS-deficient fibroblasts, using tandem affinity purification (TAP) and identified a series of proteins that transiently interact with the gamma-secretase complex and are probably involved in complex maturation, membrane trafficking and, importantly, the tetraspanin web. Tetraspanins form detergent-resistant microdomains in the cell membrane and regulate cell adhesion, cell signalling and proteolysis. Association of the gamma-secretase complex with tetraspanin-enriched microdomains provides an explanation for the previously documented localization of gamma-secretase to raft-like domains. Thus, these studies suggest that maintenance of the integrity of tetraspanin microdomains contributes to the refinement of proteolytic activity of the gamma-secretase complex.
Plant defensins are active against plant and human pathogenic fungi (such as Candida albicans) and baker's yeast. However, they are non-toxic to human cells, providing a possible source for treatment of fungal infections. In this study, we characterized the mode of action of the antifungal plant defensin HsAFP1 from coral bells by screening the Saccharomyces cerevisiae deletion mutant library for mutants with altered HsAFP1 sensitivity and verified the obtained genetic data by biochemical assays in S. cerevisiae and C. albicans. We identified 84 genes, which when deleted conferred at least fourfold hypersensitivity or resistance to HsAFP1. A considerable part of these genes were found to be implicated in mitochondrial functionality. In line, sodium azide, which blocks the respiratory electron transport chain, antagonized HsAFP1 antifungal activity, suggesting that a functional respiratory chain is indispensable for HsAFP1 antifungal action. Since mitochondria are the main source of cellular reactive oxygen species (ROS), we investigated the ROS-inducing nature of HsAFP1. We showed that HsAFP1 treatment of C. albicans resulted in ROS accumulation. As ROS accumulation is one of the phenotypic markers of apoptosis in yeast, we could further demonstrate that HsAFP1 induced apoptosis in C. albicans. These data provide novel mechanistic insights in the mode of action of a plant defensin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.