The nervous system, through a combination of conscious and automatic processes, enables the regulation of the body and its interactions with the environment. The peripheral nervous system is an excellent target for technologies that seek to modulate, restore or enhance these abilities as it carries sensory and motor information that most directly relates to a target organ or function. However, many applications require a combination of both an effective peripheral nerve interface and effective signal processing techniques to provide selective and stable recordings. While there are many reviews on the design of peripheral nerve interfaces, reviews of data analysis techniques and translational considerations are limited. Thus, this tutorial aims to support new and existing researchers in the understanding of the general guiding principles, and introduces a taxonomy for electrode configurations, techniques and translational models to consider.
Wearable assistive robotics is an emerging technology with the potential to assist humans with sensorimotor impairments to perform daily activities. This assistance enables individuals to be physically and socially active, perform activities independently, and recover quality of life. These benefits to society have motivated the study of several robotic approaches, developing systems ranging from rigid to soft robots with single and multimodal sensing, heuristics and machine learning methods, and from manual to autonomous control for assistance of the upper and lower limbs. This type of wearable robotic technology, being in direct contact and interaction with the body, needs to comply with a variety of requirements to make the system and assistance efficient, safe and usable on a daily basis by the individual. This paper presents a brief review of the progress achieved in recent years, the current challenges and trends for the design and deployment of wearable assistive robotics including the clinical and user need, material and sensing technology, machine learning methods for perception and control, adaptability and acceptability, datasets and standards, and translation from lab to the real world.
The human hand is a vital component of our interaction with the environment, containing a large number of sensory receptors. The loss of a hand is, therefore, a serious and debilitating injury. Surveys have shown that 98% of users of upper limb prostheses desire to feel the level of force they apply through their prosthetic hands. Developments in tactile sensors have yielded many functional electronic skins. However, their complexity remains a barrier to their use in commercial prosthetic hands. This paper introduces a new design of a simple, flexible pressure sensor using carbon fibre tows as both the sensor and the electrodes. The design results in a dynamic pressure range of 0.35 to 280 kPa in a 25-by-25 mm prototype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.