Background We compared T1- and T2-weighted signal intensities of liver-specific (gadoxetate, gadobenate) and non-specific (gadoterate) gadolinium contrast agents (CAs) in a bile phantom. Methods In a phantom study, gadoxetate, gadobenate, and gadoterate were diluted in saline, blood, and bile at different concentrations (0, 0.25, 0.5. 1, 2.5, 5, 10, and 25 mM) and imaged in a 3-T magnetic resonance imaging (MRI) system using T1- and T2-weighted sequences. The maximum signal intensities of CAs were compared for each sequence separately and across all T1-weighted sequences using one-way ANOVA. Results Using T1-weighted sequences, CA concentration-dependent signal intensity increase was followed by decrease due to T2* effects. Comparing CAs for each sequence in bile yielded higher maximum signal intensities with gadobenate than gadoxetate and gadoterate using T1-weighted spin-echo (p < 0.010), multiecho gradient- and spin-echo (p < 0.001), and T1-weighted high-resolution isotropic volume excitation (eTHRIVE) sequences (p < 0.010). Comparing across all T1-weighted sequences in the bile phantom, gadobenate imaged using T1-weighted turbo field-echo (TFE) sequence showed the highest signal intensity, significantly higher than that using other CAs agents or sequences (p < 0.004) except for gadobenate and gadoxetate evaluated with three-dimensional multiecho fast field-echo (3D-mFFE) and gadoxetate with T1-weighted TFE sequence (p > 0.141). Signal reduction with CA concentration-dependent decrease was observed on T2-weighted images. Conclusion In this bile phantom study of gadolinium-based CA, gadobenate and gadoxetate showed high signal intensity with T1-weighted TFE and 3D-mFFE sequences, which supports their potential utility for contrast-enhanced hepatobiliary MRI. Key points • Contrast-enhanced magnetic resonance (MR) cholangiography depends on contrast agent type, kinetics, and concentration in bile, • We compared signal intensities of three contrast agents in a bile phantom study. • Gadobenate, gadoxetate, and gadoterate demonstrated different signal intensities at identical concentrations. • Gadoxetate and gadobenate showed high signal intensities on T1-weighted MR sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.