Synthetic peptides have been used to sensitize target cells and thereby screen for epitopes recognized by T cells. Most epitopes of cytotoxic T lymphocytes can be mimicked by synthetic peptides of 12-15 amino acids. Although in specific cases, truncations of peptides improves sensitization of target cells, no optimum length for binding to major histocompatibility complex (MHC) class I molecules has been defined. We have now analysed synthetic peptide captured by empty MHC class I molecules of the mutant cell line RMA-S. We found that class I molecules preferentially bound short peptides (nine amino acids) and selectively bound these peptides even when they were a minor component in a mixture of longer peptides. These results may help to explain the difference in size restriction of T-cell epitopes between experiments with synthetic peptides and those with naturally processed peptides.
The major histocompatibility complex (MHC)-encoded transporter associated with antigen processing (TAP) translocates peptides from the cytosol into the lumen of the endoplasmic reticulum. This step precedes the binding of peptides to MHC class I molecules and is essential for cell surface expression of the MHC class I/peptide complex. TAP has a broad sequence specificity and a preference for peptides of around 9 amino acids. To synthesize inhibitors for TAP, we studied various alterations of the peptide substrate. The results indicate that TAP is stereospecific and that peptide bonds engineered into isosteric structures can improve translocation of the peptide. Furthermore, TAP is able to translocate peptides with large side chains that correspond to a peptide of approximately 21 amino acids in extended conformation. Peptides with longer side chains compete for the peptide binding site of TAP but fail to be translocated. Therefore, they represent the first rationally designed inhibitors of TAP.
Major histocompatibility complex (MHC) class I molecules combine with short peptides of defined length and sequence. Here we describe an approach that may be used in the analysis of peptide preference of different allelic MHC class I molecules, and in the determination of T cell epitopes. We produced synthetic "peptide libraries" of limited complexity by standard peptide chemistry. Using these peptide mixtures we show that H-2 Kb molecules can accommodate both 8- and 9-residue peptides, whereas Db molecules are unable to combine with peptides shorter than 9 amino acids present in these libraries. When these peptide mixtures are used to provide "fingerprints" of Db molecules and mutants thereof, both loss and gain of the ability to combine with certain peptides is observed. For the Kbm1 mutant a strong influence of amino acid substitutions in class I molecules on the peptides selected is observed. In these synthetic peptide mixtures, the presence of a specific T cell epitope, known to be represented once, can be detected. This approach may be extended to the identification of new T cell epitopes from larger peptide libraries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.