In this paper, large-scale fading and temporal fading characteristics of the industrial radio channel at 900, 2400, and 5200 MHz are determined. In contrast to measurements performed in houses and in office buildings, few attempts have been made until now to model propagation in industrial environments. In this paper, the industrial environment is categorized into different topographies. Industrial topographies are defined separately for large-scale and temporal fading, and their definition is based upon the specific physical characteristics of the local surroundings affecting both types of fading. Large-scale fading is well expressed by a one-slope path-loss model and excellent agreement with a lognormal distribution is obtained. Temporal fading is found to be Ricean and Ricean K-factors have been determined. Ricean K-factors are found to follow a lognormal distribution
As the roll-out of the fifth generation (5G) of mobile telecommunications is well underway, standardized methods to assess the human exposure to radiofrequency electromagnetic fields from 5G base station radios are needed in addition to existing numerical models and preliminary measurement studies. Challenges following the introduction of 5G New Radio (NR) include the utilization of new spectrum bands and the widespread use of technological advances such as Massive MIMO (Multiple-Input Multiple-Output) and beamforming. We propose a comprehensive and ready-to-use exposure assessment methodology for use with common spectrum analyzer equipment to measure or calculate in-situ the time-averaged instantaneous exposure and the theoretical maximum exposure from 5G NR base stations. Besides providing the correct method and equipment settings to capture the instantaneous exposure, the procedure also comprises a number of steps that involve the identification of the Synchronization Signal Block, which is the only 5G NR component that is transmitted periodically and at constant power, the assessment of the power density carried by its resources, and the subsequent extrapolation to the theoretical maximum exposure level. The procedure was validated on site for a 5G NR base station operating at 3.5 GHz, but it should be generally applicable to any 5G NR signal, i.e., as is for any sub-6 GHz signal and after adjustment of the proposed measurement settings for signals in the millimeter-wave range.INDEX TERMS 5G, radiofrequency electromagnetic fields (RF-EMF), exposure assessment, measurement, massive MIMO, mobile telecommunications, new radio, spectrum analyzer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.