Cellular oxidation and reduction (redox) environment is influenced by the production and removal of reactive oxygen species (ROS). In recent years, several reports support the hypothesis that cellular ROS-levels could function as “second messengers” regulating numerous cellular processes, including proliferation. Periodic oscillations in the cellular redox environment, a redox cycle, regulate cell cycle progression from quiescence (G0) to proliferation (G1, S, G2, and M) and back to quiescence. A loss in the redox control of the cell cycle could lead to aberrant proliferation, a hallmark of various human pathologies. This review discusses the literature which supports the concept of a redox cycle controlling the mammalian cell cycle with an emphasis on how this control relates to proliferative disorders including cancer, wound healing, fibrosis, cardiovascular diseases, diabetes, and neurodegenerative diseases. We hypothesize that reestablishing the redox control of the cell cycle by manipulating the cellular redox environment could assuage many aspects of the proliferative disorders.
To identify rational therapeutic combinations with cytarabine (Ara-C), we developed a high-throughput, small-interference RNA (siRNA) platform for myeloid leukemia cells. Of 572 kinases individually silenced in combination with Ara-C, silencing of 10 (1.7%) and 8 (1.4%) kinases strongly increased Ara-C activity in TF-1 and THP-1 cells, respectively. The strongest molecular concepts emerged around kinases involved in cell-cycle checkpoints and DNA-damage repair. In confirmatory siRNA assays, inhibition of WEE1 resulted in more potent and universal sensitization across myeloid cell lines than siRNA inhibition of PKMYT1, CHEK1, or ATR. Treatment of 8 acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myeloid leukemia (CML) cell lines with commercial and the first-in-class clinical WEE1 kinase inhibitor MK1775 confirmed sensitization to Ara-C up to 97-fold. Ex vivo, adding MK1775 substantially reduced viability in 13 of 14 AML, CML, and myelodysplastic syndrome patient samples compared with Ara-C alone. Maximum sensitization occurred at lower to moderate concentrations of both drugs. Induction of apoptosis was increased using a combination of Ara-C and MK1775 compared with using either drug alone. WEE1 is expressed in primary AML, ALL, and CML specimens. Data from this first siRNA-kinome sensitizer screen suggests that inhibiting WEE1 in combination with Ara-C is a rational combination for the treatment of myeloid and lymphoid leukemias.
Novel combinations targeting new molecular vulnerabilities are needed to improve the outcome of patients with acute myeloid leukemia. We recently identified WEE1 kinase as a novel target in leukemias. To identify genes that are synthetically lethal with WEE1 inhibition, we performed a short interfering RNA screen directed against cell cycle and DNA repair genes during concurrent treatment with the WEE1 inhibitor MK1775. CHK1 and ATR, genes encoding two replication checkpoint kinases, were among the genes whose silencing enhanced the effects of WEE1 inhibition most, whereas CDK2 short interfering RNA antagonized MK1775 effects. Building on this observation, we examined the impact of combining MK1775 with selective small molecule inhibitors of CHK1, ATR and cyclin-dependent kinases. The CHK1 inhibitor MK8776 sensitized acute myeloid leukemia cell lines and primary leukemia specimens to MK1775 ex vivo, whereas smaller effects were observed with the MK1775/MK8776 combination in normal myeloid progenitors. The ATR inhibitor VE-821 likewise enhanced the antiproliferative effects of MK1775, whereas the cyclin-dependent kinase inhibitor roscovitine antagonized MK1775. Further studies showed that MK8776 enhanced MK1775-mediated activation of the ATR/CHK1 pathway in acute leukemia cell lines and ex vivo. These results indicate that combined cell cycle checkpoint interference with MK1775/MK8776 warrants further investigation as a potential treatment for acute myeloid leukemia.
Proliferating cells consume more glucose to cope with the bioenergetics and biosynthetic demands of rapidly dividing cells as well as to counter a shift in cellular redox environment. This study investigates the hypothesis that manganese superoxide dismutase (MnSOD) regulates cellular redox flux and glucose consumption during the cell cycle. A direct correlation was observed between glucose consumption and percentage of S-phase cells in MnSOD wild type fibroblasts, which was absent in MnSOD homozygous knockout fibroblasts. Results from electron paramagnetic resonance spectroscopy and flow cytometry assays showed a significant increase in cellular superoxide levels in S-phase cells, which was associated with an increase in glucose and oxygen consumption, and a decrease in MnSOD activity. Mass spectrometry results showed a complex pattern of MnSOD-methylation at both lysine (68, 89, 122, and 202) and arginine (197 and 216) residues. MnSOD protein carrying a K89A mutation had significantly lower activity compared to wild type MnSOD. Computational-based simulations indicate that lysine and arginine methylation of MnSOD during quiescence would allow greater accessibility to the enzyme active site as well as increase the positive electrostatic potential around and within the active site. Methylation-dependent changes in the MnSOD conformation and subsequent changes in the electrostatic potential around the active site during quiescence vs. proliferation could increase the accessibility of superoxide, a negatively charged substrate. These results support the hypothesis that MnSOD regulates a “metabolic switch” during progression from quiescent through the proliferative cycle. We propose MnSOD as a new molecular player contributing to the “Warburg effect.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.