Event-related potentials to tones show differences between children with multiple risk factors for dyslexia and control children before the onset of formal reading instruction Hämäläinen, Jarmo; Lohvansuu, Kaisa; Ervast, Leena; Leppänen, Paavo H.T.Hämäläinen, J., Lohvansuu, K., Ervast, L., & Leppänen, P. (2015). Event-related potentials to tones show differences between children with multiple risk factors for dyslexia and control children before the onset of formal reading instruction.
AbstractMultiple risk factors can affect the development of specific reading problems or dyslexia. In addition to the most prevalent and studied risk factor, phonological processing, also auditory discrimination problems have been found in children and adults with reading difficulties. The present study examined 37 children between the ages of 5 and 6, 11 of which had multiple risk factors for developing reading problems. The children participated in a passive oddball EEG experiment with sinusoidal sounds with changes in sound frequency, duration, or intensity. The responses to the standard stimuli showed a negative voltage shift in children at risk for reading problems compared to control children at 107-215 ms in frontocentral areas corresponding to P1 offset and N250 onset. Source analyses showed that the difference originated from the left and right auditory cortices. Additionally, the children at risk for reading problems had a larger late discriminative negativity (LDN) response in amplitude for sound frequency change than the control children. The amplitudes at the P1-N250 time window showed correlations to letter knowledge and phonological identification whereas the amplitudes at the LDN time window correlated with verbal short-term memory and rapid naming. These results support the view that problems in basic auditory processing abilities precede the onset of reading instruction and can act as one of the risk factors for dyslexia.
Dyslexia is a neurobiological disorder impairing learning to read. Brain responses of infants at genetic risk for dyslexia are abnormal already at birth, and associations from infant speech perception to preschool cognitive skills and reading in early school years have been documented, but there are no studies showing predicting power until adolescence. Here we show that in at-risk infants, brain activation to pseudowords at left hemisphere predicts 44% of reading speed at 14 years, and even improves the prediction after taking into account neurocognitive preschool measures of letter naming, phonology, and verbal short-term memory. The association between infant brain responses and reading speed is mediated by preschool rapid automatized naming ability. Therefore, we suggest that rapid naming and reading speed could share a similar cognitive process of automatized access to lexicon via phonological representations, and brain activation to speech sounds in infancy probably acts as an index of deficient development of the same process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.