Current methods for retrieving SWE (snow water equivalent) from space rely on passive microwave sensors. Observations are limited by poor spatial resolution, ambiguities related to separation of snow microstructural properties from the total snow mass, and signal saturation when snow is deep (~>80 cm). The use of SAR (Synthetic Aperture Radar) at suitable frequencies has been suggested as a potential observation method to overcome the coarse resolution of passive microwave sensors. Nevertheless, suitable sensors operating from space are, up to now, unavailable. Active microwave retrievals suffer, however, from the same difficulties as the passive case in separating impacts of scattering efficiency from those of snow mass. In this study, we explore the potential of applying active (radar) and passive (radiometer) microwave observations in tandem, by using a dataset of co-incident tower-based active and passive microwave observations and detailed in situ data from a test site in Northern Finland. The dataset spans four winter seasons with daily coverage. In order to quantify the temporal variability of snow microstructure, we derive an effective correlation length for the snowpack (treated as a single layer), which matches the simulated microwave response of a semi-empirical radiative transfer model to observations. This effective parameter is derived from radiometer and radar observations at different frequencies and frequency combinations (10.2, 13.3 and 16.7 GHz for radar; 10.65, 18.7 and 37 GHz for radiometer). Under dry snow conditions, correlations are found between the effective correlation length retrieved from active and passive measurements. Consequently, the derived effective correlation length from passive microwave observations is applied to parameterize the retrieval of SWE using radar, improving retrieval skill compared to a case with no prior knowledge of snow-scattering efficiency. The same concept can be applied to future radar satellite mission concepts focused on retrieving SWE, exploiting existing methods for retrieval of snow microstructural parameters, as employed within the ESA (European Space Agency) GlobSnow SWE product. Using radar alone, a seasonally optimized value of effective correlation length to parameterize retrievals of SWE was sufficient to provide an accuracy of <25 mm (unbiased) Root-Mean Square Error using certain frequency combinations. A temporally dynamic value, derived from e.g., physical snow models, is necessary to further improve retrieval skill, in particular for snow regimes with larger temporal variability in snow microstructure and a more pronounced layered structure.
In-situ snow measurements conducted by European institutions for operational, research, and energy business applications were surveyed in the framework of the European Cooperation in Science and Technology (COST) Action ES1404, called “A European network for a harmonised monitoring of snow for the benefit of climate change scenarios, hydrology, and numerical weather prediction”. Here we present the results of this survey, which was answered by 125 participants from 99 operational and research institutions, belonging to 38 European countries. The typologies of environments where the snow measurements are performed range from mountain to low elevated plains, including forests, bogs, tundra, urban areas, glaciers, lake ice, and sea ice. Of the respondents, 93% measure snow macrophysical parameters, such as snow presence, snow depth (HS), snow water equivalent (SWE), and snow density. These describe the bulk characteristics of the whole snowpack or of a snow layer, and they are the primary snow properties that are needed for most operational applications (such as hydrological monitoring, avalanche forecast, and weather forecast). In most cases, these measurements are done with manual methods, although for snow presence, HS, and SWE, automatized methods are also applied by some respondents. Parameters characterizing precipitating and suspended snow (such as the height of new snow, precipitation intensity, flux of drifting/blowing snow, and particle size distribution), some of which are crucial for the operational services, are measured by 74% of the respondents. Parameters characterizing the snow microstructural properties (such as the snow grain size and shape, and specific surface area), the snow electromagnetic properties (such as albedo, brightness temperature, and backscatter), and the snow composition (such as impurities and isotopes) are measured by 41%, 26%, and 13% of the respondents, respectively, mostly for research applications. The results of this survey are discussed from the perspective of the need of enhancing the efficiency and coverage of the in-situ observational network applying automatic and cheap measurement methods. Moreover, recommendations for the enhancement and harmonization of the observational network and measurement practices are provided.
Knowledge of snow microstructure is relevant for modelling the physical properties of snow cover and for simulating the propagation of electromagnetic waves in remote-sensing applications. Characterization of the microstructure in field conditions is, however, a challenging task due to the complex, sintered and variable nature of natural snow cover. A traditional measure applied as a proxy of snow microstructure, which can also be determined in field conditions, is the visually estimated snow grain size. Developing techniques also allow measurement, for example, of the specific surface area (SSA) of snow, from which the optical-equivalent grain size can be derived. The physical snow model SNOWPACK simulates evolution of snow parameters from meteorological forcing data. In this study we compare an extensive experimental dataset of measurements of traditional grain size and SSA-derived optical grain size with SNOWPACK simulations of grain-size parameters. On average, a scaling factor of 1.2 is required to match traditional grain-size observations with the corresponding SNOWPACK simulation; a scaling factor of 2.1 was required for the optical equivalent grain size. Standard deviations of scaling factors for the winters of 2011/12 and 2012/13 were 0.36 and 0.42, respectively. The largest scaling factor was needed in early winter and under melting conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.