Yersinia pestis is the etiological agent of pneumonic and bubonic plague. As the currently licensed vaccines for plague have their own limitations, there is a need for a rational and more effective form of a subunit vaccine to combat both forms of the disease. Newer methods of antigen delivery coupled with adjuvant offer an alternative approach toward a plague vaccine. In order to develop a new generation vaccine against plague, we chose an immunodominant, outer membrane capsular protein, F1 of Y. pestis. The immunogenicity of the peptide sequences, predicted to possess B (three sequences, B1, B2 and B3) and T (two sequences, T1 and T2) cell determinants, was studied in a murine model with different genetic backgrounds, using alhydrogel and liposomes as delivery vehicles. All the peptide sequences are immunogenic in all mouse strains and showed primary and secondary immune response. B2 peptide was found to be most immunogenic, followed by B1 and B3 peptides. Chimeras made between B and T structures proved highly immunogenic and the antibody levels are comparable with native F1 antigen, thereby proving that T1 and T2 are helper sequences. Interestingly, the liposome mode of immunization was found to be more immunogenic and generated higher affinity antibodies than the alum-based preparation. Immunization using a mixture of all the peptides further proved B2 to be immunodominant. The IgG isotype profile showed predominance of IgG1, IgG2b followed by IgG2a for all the formulations irrespective of mode of antigen delivery. Lymphocyte proliferation of spleen cells primed in vivo with peptides, B-T conjugates and F1 antigen followed by in vitro stimulation with these antigens in soluble (medium) and particulate (liposome) form, showed dose-dependent stimulation of T cells, while B-T constructs showed a higher stimulation index, comparable to F1 antigen. The liposome mode of antigen presentation showed higher lymphoproliferation of spleen cells. Of all the peptides tested, T1 and T2 sequences showed the highest stimulation indices. The pattern of cytokine levels was in the following order: interferon-gamma>interleukin-2>interleukin-4. In vivo protective studies of the B-T conjugates revealed that B1T1 and a mixture of conjugates showed a survival rate of 10 days. Thus, the study highlights the importance of B and T cell epitopes as peptide-based immunogens, being a serious alternative for plague vaccine.
The dramatic advancements in the field of vaccinology has led to the formulation of chemically well defined vaccines composed of synthetic peptides and recombinant proteins derived from the immunologically dominant regions of the pathogens. Though these subunit vaccines are safer compared to the traditional vaccines they are known to be poorly immunogenic. This necessitates the use of adjuvants to enhance the immunogenicity of these vaccine formulations. The most common adjuvant for human use is alum. Research in the past has focused on the development of systemic immunity using conventional immunization protocols. In the present era, the emphasis is on the development and formulation of alternative adjuvants and delivery systems in generating systemic as well as mucosal immunity. This review mainly focuses on a variety of adjuvants (particulate as well as non-particulate) used with protective antigens of HIV, malaria, plague, leprosy using modified delivery vehicles. The experience of our laboratory and other researchers in this field clearly proves that these new age adjuvants and delivery systems undoubtedly generate enhanced immune response -both humoral and cell mediated. The choice of antigens, the nature of adjuvant used and the mode of delivery employed have a profound effect on the type of immune response generated. Besides the quantity, the quality of the antibodies generated also play a vital role in protection against these diseases. Some of the adjuvants and delivery systems used promoted high titre and affinity antibodies, which were shown to be cytophilic in nature, an important criteria in providing protection to the host. Thus the studies on these adjuvants/ delivery systems with respect to various infectious diseases indicate their active role in efficient modulation of immune response along with safety and permissiblity.
The F1 antigen of Yersinia pestis has been identified as one of the major protective antigens of this bacterium. The present study aims to delineate major and minor antigenic sites of F1 antigen. Using algorithmic predictions, five peptide sequences (P1, P2, P3, P4 and P5) spanning the C-terminal region were identified and synthesized. Antibodies were generated in mice against the peptides, native F1 protein and polymerized F1 antigen using liposomes as mode of immunization. Cross-reactivity between F1 antigen and peptides was tested using both solid and solution phase assays. Similar assays were done with rabbit anti-F1 sera. Competitive inhibition assays using a different combination of antisera and competing antigen identified P2 peptide FFVRSIGSKGGKLAAGKYTDAVTV (142^165) as the immunodominant sequence. The results indicate that this sequence appears to be exposed on the surface of F1 molecule. In a solid phase binding assay, P2 peptide was recognized even at high F1 antisera dilution. However, when antisera raised to different peptides were tested for binding to F1 antigen, antisera to P4 peptide showed maximal immunoreactivity. This implies more accessibility of this region during immobilization on solid surface. There was consistency in the results obtained for different strains of mice as well as for the rabbit antisera. Such a sequence of F1 antigen, which is recognized widely in animals of different genetic background, would be useful for diagnosis and subunit vaccine. ß
The F1 antigen of Yersinia pestis has been identified as one of the major protective antigens of this bacterium. The present study aims to delineate major and minor antigenic sites of F1 antigen. Using algorithmic predictions, five peptide sequences (P1, P2, P3, P4 and P5) spanning the C‐terminal region were identified and synthesized. Antibodies were generated in mice against the peptides, native F1 protein and polymerized F1 antigen using liposomes as mode of immunization. Cross‐reactivity between F1 antigen and peptides was tested using both solid and solution phase assays. Similar assays were done with rabbit anti‐F1 sera. Competitive inhibition assays using a different combination of antisera and competing antigen identified P2 peptide FFVRSIGSKGGKLAAGKYTDAVTV (142–165) as the immunodominant sequence. The results indicate that this sequence appears to be exposed on the surface of F1 molecule. In a solid phase binding assay, P2 peptide was recognized even at high F1 antisera dilution. However, when antisera raised to different peptides were tested for binding to F1 antigen, antisera to P4 peptide showed maximal immunoreactivity. This implies more accessibility of this region during immobilization on solid surface. There was consistency in the results obtained for different strains of mice as well as for the rabbit antisera. Such a sequence of F1 antigen, which is recognized widely in animals of different genetic background, would be useful for diagnosis and subunit vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.