Phage display has enabled the rapid isolation of antigen-specific antibodies from combinatorial libraries of V(H) and V(L) genes obtained from lymphocytes of immunized animals. Recently, a different approach to antibody isolation that circumvents library screening and instead relies on the mining of the V(H) and V(L) gene repertoires obtained by high throughput sequencing of cDNAs from bone marrow antibody-secreting cells was reported. Here we compared the antibodies obtained via phage library screening or via repertoire mining of V gene cDNAs obtained from total splenocytes of mice immunized with the hapten trinitrophenyl (TNP) conjugated to carrier proteins. We show that, despite the large heterogeneity of B lymphocytes in the spleen, the most abundant V genes encoded antigen-specific antibodies, indicating that total splenocytes can be used in place of bone marrow plasma cells for antibody discovery at least in high titer animals. While both phage display and repertoire mining yielded antigen-specific antibodies showing comparable affinities by enzyme-linked immunosorbent assay analysis, clones obtained by the latter approach displayed higher selectivity towards TNP relative to control haptens. Interestingly, the antibody genes isolated by phage display were of low abundance or absent from the V gene repertoire obtained by 454 sequencing. Similarly, the highly abundant V genes identified by repertoire mining, that as soluble antibodies were antigen-specific, were found to be poorly displayed on phage and were not enriched by phage panning. Thus, our results reveal that phage display and repertoire mining of immune repertoires are complementary technologies that can yield different antigen-specific antibody clones.
Bispecific antibodies (bsAbs) are antibodies with two binding sites directed at different antigens, enabling therapeutic strategies not achievable with conventional monoclonal antibodies (mAbs). Since bispecific antibodies are regarded as promising therapeutic agents, many different bispecific design modalities have been evaluated, but as many of them are small recombinant fragments, their utility could be limited. For some therapeutic applications, full-size IgGs may be the optimal format. Two challenges should be met to make bispecific IgGs; one is that each heavy chain will only pair with the heavy chain of the second specificity and that homodimerization be prevented. The second is that each heavy chain will only pair with the light chain of its own specificity and not with the light chain of the second specificity. The first solution to the first criterion (knobs into holes, KIH) was presented in 1996 by Paul Carter's group from Genentech. Additional solutions were presented later on. However, until recently, out of >120 published bsAb formats, only a handful of solutions for the second criterion that make it possible to produce a bispecific IgG by a single expressing cell were suggested. We present a solution for the second challenge-correct pairing of heavy and light chains of bispecific IgGs; an engineered (artificial) disulfide bond between the antibodies' variable domains that asymmetrically replaces the natural disulfide bond between CH1 and CL. We name antibodies produced according to this design "BIClonals". Bispecific IgGs where the artificial disulfide bond is placed in the CH1-CL interface are also presented. Briefly, we found that an artificial disulfide bond between V H position 44 to V L position 100 provides for effective and correct H-L chain pairing while also preventing the formation of wrong H-L chain pairs. When the artificial disulfide bond links the CH1 with the CL domain, effective H-L chain pairing also occurs, but in some cases, wrong H-L pairing is not totally prevented. We conclude that H-L chain pairing seems to be driven by V H -V L interfacial interactions that differ between different antibodies, hence, there is no single optimal solution for effective and precise assembly of bispecific IgGs, making it necessary to carefully evaluate the optimal solution for each new antibody.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.