We describe a system for gene expression in plants based on the regulation mechanism of the yeast metallothionein (MT) gene. The system consists of two elements: (i) the yeast acel (activating gopper-MT expression) gene encoding a transcription factor under control of the cauliflower mosaic virus (CaMV) 35S RNA promoter, and (ii) a gene of interest under control of a chimeric promoter consisting of the 90-base-pair domain A of the CaMV 35S RNA promoter linked to the ACE1 transcription factor-binding site. At elevated copper ion concentrations, the ACE1 protein changes conformation, binds to, and activates transcription from the chimeric promoter. To test the functioning of the system in plants, a construct containing the 3-glucuronidase (GUS) reporter gene under control of the chimeric promoter was prepared, and transgenic tobacco plants were produced. It was shown that GUS activity in the leaves of transgenic plants increased up to 50-fold, either after addition of 50 ,M CuS04 to the nutrient solution or after application of 0.5 ,uM CuSO4 to the plants in a foliar spray. This GUS expression was repressed after the removal ofcopper ions. The results show that the activity of the described chimeric promoter directly depends on copper ion concentration and that this system can be used in experiments that demand precise timing of expression.
A vector system, based on copper controllable gene expression, has been developed to give control over place as well as time of expression of an introduced gene. This system consists of two elements: (1) the yeast ace1 gene encoding a metallo-regulatory transcription factor, ACE1, under control of either an organ-specific or a constitutive promoter; and (2) a gene of interest under control of a chimaeric promoter consisting of the 46 bp TATA fragment of the CaMV 35S RNA promoter linked to four repeats of the ACE1 binding site. The functioning of the system in an organ-specific manner was tested in nodulated Lotus corniculatus plants which consisted of non-transformed shoots plus transformed hairy root tissue 'wild-type tops/transgenic roots'. After addition of copper ions to the plant nutrient solution, beta-glucuronidase (GUS) expression was visualized either specifically in nodules or in both roots and nodules when the ace1 gene was placed under control of the nod45 promoter or the CaMV 35S RNA promoter, respectively. The nodule-specific system was used to express antisense constructs of aspartate aminotransferase-P2 in transgenic Lotus corniculatus plants. When expression was induced by the addition of copper ions to the plant nutrient solution aspartate aminotransferase-P2 activity declined dramatically, and a decrease of up to 90% was observed in nodule asparagine concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.