A strong potential gain for space applications is expected from the anticipated performances of inertial sensors based on cold atom interferometry (CAI) that measure the acceleration of freely falling independent atoms by manipulating them with laser light. In this context, CNES and its partners initiated a phase 0 study, called CARIOQA, in order to develop a Quantum Pathfinder Mission unlocking key features of atom interferometry for space and paving the way for future ambitious space missions utilizing this technology. As a cornerstone for the implementation of quantum sensors in space, the CARIOQA phase 0 aimed at defining the Quantum Pathfinder Mission's scenario and associated performance objectives. To comply with these objectives, the payload architecture has been designed to achieve long interrogation time and active rotation compensation on a BEC-based atom interferometer. A study of the satellite architecture, including all the subsystems, has been conducted. Several technical solutions for propulsion and attitude control have been investigated in order to guarantee optimal operating conditions (limitation of micro-vibrations, maximization of measurement time). A preliminary design of the satellite platform was performed.
We study the effects of rotations on a cold atom accelerometer onboard a Nadir pointing satellite. A simulation of the satellite attitude combined with a calculation of the phase of the cold atom interferometer allow us to evaluate the noise and bias induced by rotations. In particular, we evaluate the effects associated to the active compensation of the rotation due to Nadir pointing. This study was realized in the context of the preliminary study phase of the CARIOQA Quantum Pathfinder Mission.
We study the effects of rotations on a cold atom accelerometer onboard a Nadir pointing satellite. A simulation of the satellite attitude combined with a calculation of the phase of the cold atom interferometer allow us to evaluate the noise and bias induced by rotations. In particular, we evaluate the effects associated to the active compensation of the rotation due to Nadir pointing. This study was realized in the context of the preliminary study phase of the CARIOQA Quantum Pathfinder Mission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.