ResumenEn esta Tesis presentamos el estudio teórico y numérico de sistemas de ecuaciones diferenciales basado en el análisis de un funcional asociado de forma natural al problema original. Probamos que cuando se utiliza métodos del descenso para minimizar dicho funcional, el algoritmo decrece el error hasta obtener la convergencia dada la no existencia de mínimos locales diferentes a la solución original. En cierto sentido el algoritmo puede considerarse un método tipo Newton globalmente convergente al estar basado en una linearización del problema. Se han estudiado la aproximación de ecuaciones diferenciales rígidas, de ecuaciones rígidas con retardo, de ecuaciones algebraico-diferenciales y de problemas hamiltonianos. Esperamos que esta nueva técnica variacional pueda usarse en otro tipo de problemas diferenciales. AbstractThis thesis is devoted to the study and approximation of systems of differential equations based on an analysis of a certain error functional associated, in a natural way, with the original problem. We prove that in seeking to minimize the error by using standard descent schemes, the procedure can never get stuck in local minima, but will always and steadily decrease the error until getting to the original solution. One main step in the procedure relies on a very particular linearization of the problem, in some sense it is like a globally convergent Newton type method. We concentrate on the approximation of stiff systems of ODEs, DDEs, DAEs and Hamiltonian systems. In all these problems we need to use implicit schemes. We believe that this approach can be used in a systematic way to examine other situations and other types of equations. 10.3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.