Each electronic cigarette (e-cigarette) is a battery-powered system which converts electronic cigarette liquids (e-liquids) into the inhalable phase by heating the solution when it is in use. After four generations...
A mathematical model based on heat and mass transfer processes in the porous wick of electronic cigarettes was established to describe the atomization of e-liquids according to max liquid temperature, vaporization rate and thermal efficiency in a single puff. Dominant capillary-evaporation effects were defined in the model to account for the effects of electrical power, e-liquid composition and porosity of the wick material on atomization and energy transmission processes. Liquid temperature, vaporization rate, and thermal efficiency were predicted using the mathematical model in 64 groups, varying with electrical power, e-liquid composition and wick porosity. Experimental studies were carried out using a scaled-model test bench to validate the model’s prediction. A higher PG/VG ratio in the e-liquid promoted energy transfer for vaporization, and the e-liquid temperature was comparatively reduced at a relatively high power, which was helpful to avoid atomizer overheating. Compared with the other factors, wick porosity affected the thermal efficiency more significantly. The vaporization rate increased with a higher wick porosity in a certain range. The modelling results suggested that a greater wick porosity and a higher PG ratio in e-liquids helped to improve the overall thermal efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.