The microstructure and texture of C/C composites with a resin-derived carbon, a rough laminar (RL) pyrocarbon and a smooth laminar pyrocarbon, before and after braking tests, were investigated by Raman spectroscopy. The full width at half maximum (FWHM) of the D-band indicates the amount of defects in the in-plane lattice, while the G-to-D band intensity (peak area) ratios (I G /I D ) is used to evaluate the degree of graphitization. The results show that the FWHM of D-band of sample with RL pyrocarbon changes greatly from 36 cm −1 to 168 cm −1 after braking tests, which indicates that a large number of lattice defects are produced on its wear surface. However, the graphitization degree of resin-derived carbon sample rises significantly, because the I G /I D increases from 0.427 to 0.928. Braking tests under normal loading conditions, involving high temperature and high pressure, produce a lot of lattice defects on the wear surface, and induce the graphitization of the surface. Sample with RL pyrocarbon having a low hardness is easy to deform, and has the most lattice defects on the wear surface after braking. While raw materials with resin-derived carbon have the lowest graphitization degree which rises greatly during braking.
Three different C/C composites with rough laminar (RL) pyrocarbon, RL pyrocarbon with added resinderived carbon, and pure resin-derived carbon have been evaluated and tested for friction performance. A laboratory dynamometer was used to simulate different braking speeds utilizing a single stator and rotor pair. The morphologies and microstructures of the raw materials, wear surfaces, and wear debris at different braking levels were observed by polarized light microscopy, scanning electron microscopy, and transmission electron microscopy. The results have shown that the friction coefficients of the three C/C composites display the same characteristics with increasing braking speed. They increased to a maximum value at medium braking speed and thereafter decreased with increasing braking speed, and their mean values under the same braking conditions were similar. The C/C composite with pure resin-derived carbon showed the highest loss due to wear under all conditions, while the C/C composite with the RL pyrocarbon showed the lowest loss. Resin-derived carbon in C/C composites does not have a significant effect on the friction coefficient, but the wear rate increases greatly with increasing resin-derived carbon content. Wear debris is composed of flocculent particles with polycrystalline structure, along with the matrix carbon, which is worn off directly from the composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.