Heme proteins perform diverse functions in living systems, of which nitrite reductase (NIR) activity receives much attention recently. In this study, to better understand the structural elements responsible for the NIR activity, we used myoglobin (Mb) as a model heme protein and redesigned the heme active center, by introducing one or two distal histidines, and by creating a channel to the heme center with removal of the native distal His64 gate (His to Ala mutation). UV-Vis kinetic studies, combined with EPR studies, showed that a single distal histidine with a suitable position to the heme iron, i.e., His43, is crucial for nitrite (NO2(-)) to nitric oxide (NO) reduction. Moreover, creation of a water channel to the heme center significantly enhanced the NIR activity compared to the corresponding mutant without the channel. In addition, X-ray crystallographic studies of F43H/H64A Mb and its complexes with NO2(-) or NO revealed a unique hydrogen-bonding network in the heme active center, as well as unique substrate and product binding models, providing valuable structural information for the enhanced NIR activity. These findings enriched our understanding of the structure and NIR activity relationship of heme proteins. The approach of creating a channel in this study is also useful for rational design of other functional heme proteins.
Disulfide bond plays crucial roles in stabilization of protein structure and in fine-tuning protein functions. To explore an approach for rational heme protein design, we herein rationally introduced a pair of cysteines (F46C/M55C) into the scaffold of myoglobin (Mb), mimicking those in native neuroglobin. Molecular modeling suggested that it is possible for Cys46 and Cys55 to form an intramolecular disulfide bond, which was confirmed experimentally by ESI-MS analysis, DTNB reaction and CD spectrum. Moreover, it was shown that the spontaneously formed disulfide bond of Cys46-Cys55 fine-tunes not only the heme active site structure, but also the protein functions. The substitution of Phe46 with Ser46 in F46S Mb destabilizes the protein while facilitates H2O2 activation. Remarkably, the formation of an intramolecular disulfide bond of Cys46-Cys55 in F46C/M55C Mb improves the protein stability and regulates the heme site to be more favorable for substrate binding, resulting in enhanced peroxidase activity. This study provides valuable information of structure-function relationship for heme proteins regulated by an intramolecular disulfide bond, and also suggests that construction of such a covalent bond is useful for design of functional heme proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.