Background-The development of atrium-selective antiarrhythmic agents is a current strategy for inhibiting atrial fibrillation (AF). The present study investigated whether the natural flavone acacetin from the traditional Chinese medicine Xuelianhua would be an atrium-selective anti-AF agent. Methods and Results-The effects of acacetin on human atrial ultrarapid delayed rectifier K ϩ current (I Kur ) and other cardiac ionic currents were studied with a whole-cell patch technique. Acacetin suppressed I Kur and the transient outward K ϩ current (IC 50 3.2 and 9.2 mol/L, respectively) and prolonged action potential duration in human atrial myocytes. The compound blocked the acetylcholine-activated K ϩ current; however, it had no effect on the Na ϩ current, L-type Ca 2ϩ current, or inward-rectifier K ϩ current in guinea pig cardiac myocytes. Although acacetin caused a weak reduction in the hERG and hKCNQ1/hKCNE1 channels stably expressed in HEK 293 cells, it did not prolong the corrected QT interval in rabbit hearts. In anesthetized dogs, acacetin (5 mg/kg) prolonged the atrial effective refractory period in both the right and left atria 1 to 4 hours after intraduodenal administration without prolongation of the corrected QT interval, whereas sotalol at 5 mg/kg prolonged both the atrial effective refractory period and the corrected QT interval. Acacetin prevented AF induction at doses of 2.5 mg/kg (50%), 5 mg/kg (85.7%), and 10 mg/kg (85.7%). Sotalol 5 mg/kg also prevented AF induction (60%). Conclusions-The present study demonstrates that the natural compound acacetin is an atrium-selective agent that prolongs the atrial effective refractory period without prolonging the corrected QT interval and effectively prevents AF in anesthetized dogs after intraduodenal administration. These results indicate that oral acacetin is a promising atrium-selective agent for the treatment of AF.
The problem of food spoilage due to Aspergillus flavus (A. flavus) needs to be resolved. In this study, we found that the minimum inhibitory concentration of cinnamaldehyde (CA) that inhibited A. flavus was 0.065 mg/ml and that corn can be prevented from spoiling at a concentration of 0.13 mg/cm 3. In addition to inhibiting spore germination, mycelial growth, and biomass production, CA can also reduce ergosterol synthesis and can cause cytomembrane damage. Our intention was to elucidate the antifungal mechanism of CA. Flow cytometry, fluorescence microscopy, and western blot were used to reveal that different concentrations of CA can cause a series of apoptotic events in A. flavus, including elevated Ca 2+ and reactive oxygen species, decrease in mitochondrial membrane potential (ψ m), the release of cytochrome c, the activation of metacaspase, phosphatidylserine (PS) externalization, and DNA damage. Moreover, CA significantly increased the expression levels of apoptosis-related genes (Mst3, Stm1, AMID, Yca1, DAP3, and HtrA2). In summary, our results indicate that CA is a promising antifungal agent for use in food preservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.