The chemical similarity of cellulose and chitin supports the idea that their corresponding hydrolytic enzymes would bind β-1,4-linked glucose residues in a similar manner. A structural and mutational analysis was performed for the plant cellulolytic enzyme BGlu1 from Oryza sativa and the insect chitinolytic enzyme OfHex1 from Ostrinia furnacalis. Although BGlu1 shows little amino-acid sequence or topological similarity with OfHex1, three residues (Trp490, Glu328, Val327 in OfHex1, and Trp358, Tyr131 and Ile179 in BGlu1) were identified as being conserved in the +1 sugar binding site. OfHex1 Glu328 together with Trp490 was confirmed to be necessary for substrate binding. The mutant E328A exhibited a 8-fold increment in K
m for (GlcNAc)2 and a 42-fold increment in K
i for TMG-chitotriomycin. A crystal structure of E328A in complex with TMG-chitotriomycin was resolved at 2.5 Å, revealing the obvious conformational changes of the catalytic residues (Glu368 and Asp367) and the absence of the hydrogen bond between E328A and the C3-OH of the +1 sugar. V327G exhibited the same activity as the wild-type, but acquired the ability to efficiently hydrolyse β-1,2-linked GlcNAc in contrast to the wild-type. Thus, Glu328 and Val327 were identified as important for substrate-binding and as glycosidic-bond determinants. A structure-based sequence alignment confirmed the spatial conservation of these three residues in most plant cellulolytic, insect and bacterial chitinolytic enzymes.
To obtain both high ionization and high deposition rate, a modified global model for a continuous high-power DC magnetron sputtering (C-HPMS) is established by considering the continuous generation of the hot electrons and the high temperature caused by continuous high-power discharge. The results show that the plasma density is on the order of 1019 m−3 for power densities of only 183 W cm−2 (Al) and 117 W cm−2 (Cu). The ionization rate exceeds 90% of high-power impulse magnetron sputtering (HiPIMS) (peak power density of 564 W cm−2) for a DC power density of 180 W cm−2, and the total diffusion fluxes of the two targets are 26 (Al) and 30 (Cu) times that of conventional HiPIMS, leading to very high deposition rates. The work provides a theoretical basis for the realization of C-HPMS and gives an enlightenment to the development of deposition equipment for continuous high-power discharges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.