The full-bridge pulse-width-modulation (PWM) inverter is wildly applied to drive the electromagnet and enables advanced technologies, such as the active magnetic bearing (AMB) and the permanent-electro magnetic suspension (PEMS). However, the characteristic relationship between the current through the electromagnet and the duty cycle of the PWM signal has strong nonlinearity around the zero current. Moreover, the electromagnet possesses the induction that results in the time constant and significantly hinders the change of the current. Hence, the open-loop control of the full-bridge PWM inverter cannot accurately or timely tune the current through the electromagnet, especially around the zero current. This work proposes a closed-loop current control approach by three steps: (1) inserting a current-sensing resistor into the middle of the electromagnet, (2) obtaining the current signal with an analog signal-processing circuit, and (3) generating the PWM signal with the bang-bang control circuit. The proposed approach innovatively arranges the current-sensing resistor to take advantage of the symmetry and to minimize the influence from the high-frequency switching of the inverter, so that the measured current signal is comparable to the hall-effect current sensor. The experimental results demonstrate the effectiveness and efficiency of the proposed closed-loop current control approach, though the weak charging capability of the full-bridge PWM inverter still hinders its performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.