Reverse skyline queries over uncertain databases have many important applications such as sensor data monitoring and business planning. Due to the existence of uncertainty in many real-world data, answering reverse skyline queries accurately and efficiently over uncertain data has become increasingly important. In this paper, we model the probabilistic reverse skyline query on uncertain data, in both monochromatic and bichromatic cases, and propose effective pruning methods to reduce the search space of query processing. Moreover, efficient query procedures have been presented seamlessly integrating the proposed pruning methods. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed approach with various experimental settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.