The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3 - kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies. © 2014 American Heart Association, Inc
Lemur tyrosine kinase 3 (LMTK3) is associated with cell proliferation and endocrine resistance in breast cancer. We found that, in cultured breast cancer cell lines, LMTK3 promotes the development of a metastatic phenotype by inducing the expression of genes encoding integrin subunits. Invasive behavior in various breast cancer cell lines positively correlated with the abundance of LMTK3. Overexpression of LMTK3 in a breast cancer cell line with low endogenous LMTK3 abundance promoted actin cytoskeleton remodeling, focal adhesion formation, and adhesion to collagen and fibronectin in culture. Using SILAC (stable isotope labeling by amino acids in cell culture) proteomic analysis, we found that LMTK3 increased the abundance of integrin subunits α5 and β1, encoded by ITGA5 and ITGB1. This effect depended on the CDC42 Rho family guanosine triphosphatase, which was in turn activated by the interaction between LMTK3 and growth factor receptor-bound protein 2 (GRB2), an adaptor protein that mediates receptor tyrosine kinase-induced activation of RAS and downstream signaling. Knockdown of GRB2 suppressed LMTK3-induced CDC42 activation, blocked ITGA5 and ITGB1 expression promoted by the transcription factor serum response factor (SRF), and reduced invasive activity. Furthermore, abundance of LMTK3 positively correlated with that of the integrin β1 subunit in breast cancer patient's tumors. Our findings suggest a role for LMTK3 in promoting integrin activity during breast cancer progression and metastasis.
Resistance to endocrine therapy in breast cancer is common. With the aim of discovering new molecular targets for breast cancer therapy, we have recently identified LMTK3 as a regulator of the estrogen receptor-alpha (ERα) and wished to understand its role in endocrine resistance. We find that inhibition of LMTK3 in a xenograft tamoxifen (Tam)-resistant (BT474) breast cancer mouse model results in re-sensitization to Tam as demonstrated by a reduction in tumor volume. A whole genome microarray analysis, using a BT474 cell line, reveals genes significantly modulated (positively or negatively) after LMTK3 silencing, including some that are known to be implicated in Tam resistance, notably c-MYC, HSPB8 and SIAH2. We show that LMTK3 is able to increase the levels of HSPB8 at a transcriptional and translational level thereby protecting MCF7 cells from Tam-induced cell death, by reducing autophagy. Finally, high LMTK3 levels at baseline in tumors are predictive for endocrine resistance; therapy does not lead to alteration in levels, whereas in patient's plasma samples, acquired LMTK3 gene amplification (copy number variation) was associated with relapse while receiving Tam. In aggregate, these data support a role for LMTK3 in both innate (intrinsic) and acquired (adaptive) endocrine resistance in breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.