Temozolomide (TMZ)-based chemotherapy is a standard strategy for glioma, while chemoresistance remains a major therapeutic challenge. Recent evidence highlights the crucial regulatory roles of long non-coding RNAs (lncRNA) in tumor biology. However, the roles and regulatory mechanisms of lncRNA cancer susceptibility candidate 2 (CASC2), in glioma tumorigenesis and chemoresistance are poorly understood. In this study, CASC2 expression was down-regulated in glioma tissues and cell lines, and was related to a clinicopathologic features and shorter survival time. Exogenous CACS2 alone was sufficient to inhibit glioma cells' proliferation and amplified TMZ-induced repression of cell proliferation, while CACS2 knockdown could reverse this process. CACS2 overexpression could sensitize TMZ-resistant glioma cells to TMZ, while CACS2 knockdown exerted the opposite function. Moreover, CASC2 could inhibit the miR-181a expression by direct targeting in TMZ-resistant glioma cells. CASC2 up-regulated PTEN protein and down-regulated p-AKT protein through regulating miR-181a, and the effect of CASC2 on PTEN and p-AKT could be partially restored by miR-181a. With TMZ-resistant glioma tissues, miR-181a was up-regulated while PTEN was down-regulated. Taken together, these observations suggest CASC2 up-regulates PTEN through direct inhibiting miR-181a and plays an important role in glioma sensitivity to TMZ and may serve as a potential target for cancer diagnosis and treatment. J. Cell. Biochem. 118: 1889-1899, 2017. © 2017 Wiley Periodicals, Inc.
Since the first detection of aberrant crypt foci (ACF) in carcinogen-treated mice, there have been numerous studies focusing on these microscopically visible lesions both in rodents and in humans. ACF have been generally accepted as precancerous lesions in regard to histopathological characteristics, biochemical and immunohistochemical alterations, and genetic and epigenetic alterations. ACF show variable histological features, ranging from hyperplasia to dysplasia. ACF in human colon are more frequently located in the distal parts than in the proximal parts, which is in accordance with those in colorectal cancer (CRC). The immunohistochemical expressions of carcinoembryonic antigen (CEA), beta-catenin, placental cadherin (P-cadherin), epithelial cadherin (E-cadherin), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and P16INK4a are found to be altered. Genetic mutations of K-ras, APC and p53, and the epigenetic alterations of CpG island methylation of ACF have also been demonstrated. Genomic instabilities due to the defect of mismatch repair (MMR) system are detectable in ACF. Two hypotheses have been proposed. One is the "dysplasia ACF-adenoma-carcinoma sequence", the other is "heteroplastic ACF-adenoma-carcinoma sequence". The malignant potential of ACF, especially dysplastic ACF, makes it necessary to reveal the nature of these lesions, and to prevent CRC from the earliest possible stage. The technique of magnifying chromoscope makes it possible to detect "in vivo" ACF, which is beneficial to colon cancer research, identifying high-risk populations for CRC, and developing preventive procedures.
Although human and bovine γδ T cells were shown to express MHC class II antigen and function as APCs, attempts to determine if mouse γδ T cells have similar functions remained unsuccessful. We now show that γδ T cells derived from immunized mice also can be induced to express MHC class II and co-stimulatory molecules after activation in vitro, and are capable of antigen presentation. Using highly purified γδ T cells, we found that, unlike human γδ T cells, the expression of MHC class II molecules by mouse γδ T cells is limited to newly activated cells. Highest levels of MHC class II expression were seen on activated γδ T cells that had lost most surface-expressed γδ TCR while exhibiting increased levels of intracellular γδ TCR. In the absence of further stimulation, MHC class II expression gradually declined with the γδ T cells regaining their surface TCR. We also show that cytokine-activated γδ T cells can also express MHC class II antigen and exercise antigenpresenting activity.
CD133 is one of the markers for cancer stem cells in human laryngeal tumors, the Hep-2 cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.