The Unc-51 like autophagy activating kinase 1 (ULK1) complex plays a central role in the initiation stage of autophagy. However, the function of ULK1 in the late stage of autophagy is unknown. Here, we report that ULK1, a central kinase of the ULK1 complex involved in autophagy initiation, promotes autophagosome–lysosome fusion. PKCα phosphorylates ULK1 and prevents autolysosome formation. PKCα phosphorylation of ULK1 does not change its kinase activity; however, it decreases autophagosome–lysosome fusion by reducing the affinity of ULK1 for syntaxin 17 (STX17). Unphosphorylated ULK1 recruited STX17 and increased STX17′s affinity towards synaptosomal-associated protein 29 (SNAP29). Additionally, phosphorylation of ULK1 enhances its interaction with heat shock cognate 70 kDa protein (HSC70) and increases its degradation through chaperone-mediated autophagy (CMA). Our study unearths a key mechanism underlying autolysosome formation, a process in which the kinase activity of PKCα plays an instrumental role, and reveals the significance of the mutual regulation of macroautophagy and CMA in maintaining the balance of autophagy.
The Hippo signalling pathway can suppress the Wnt/β-catenin signalling pathway through the last downstream effectors YAP (Yes-associated protein)/TAZ (tafazzin). MST (mammalian sterile 20-like kinase) 1 functions as the upstream kinase of the Hippo pathway, and CK1ε (casein kinase 1ε) plays roles in the up-stream signal transduction of the Wnt/β-catenin pathway. In the present study, using tandem affinity purification and MS analysis, CK1ε was identified as a novel partner of MST1. Further analysis showed that the interaction between MST1 and CK1ε was mediated by their kinase domains and enhanced by the activation of MST1. To exclude the interference of the phosphorylated YAP/TAZ, the transduction from MST1 to YAP/TAZ was blocked using anti-WW45 shRNA. In the sh-WW45 cells, MST1 still inhibited the Wnt3A-induced phosphorylation of DVL2 (dishevelled 2) and Wnt/β-catenin signalling by disturbing the interaction of DVL2 and CK1ε. The growth-suppressive effect of MST1 in the presence of Wnt3A was effectively relieved by the downstream activation of the Wnt/β-catenin pathway. Moreover, MST2, the close homologue of MST1, also displayed the similar function in suppressing the Wnt/β-catenin pathway. Therefore the results of the present study revealed that, in addition to the phosphorylated YAP/TAZ, the Hippo pathway can suppress the Wnt/β-catenin pathway directly through MST1/2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.