Peptides, defined as polymers of less than 50 amino acids with a molecular weight of less than 10 kDa, represent a fast-growing class of new therapeutics which has unique pharmacokinetic characteristics compared to large proteins or small molecule drugs. Unmodified peptides usually undergo extensive proteolytic cleavage, resulting in short plasma half-lives. As a result of their low permeability and susceptibility to catabolic degradation, therapeutic peptides usually have very limited oral bioavailability and are administered either by the intravenous, subcutaneous, or intramuscular route, although other routes such as nasal delivery are utilized as well. Distribution processes are mainly driven by a combination of diffusion and to a lesser degree convective extravasation dependent on the size of the peptide, with volumes of distribution frequently not larger than the volume of the extracellular body fluid. Owing to the ubiquitous availability of proteases and peptidases throughout the body, proteolytic degradation is not limited to classic elimination organs. Since peptides are generally freely filtered by the kidneys, glomerular filtration and subsequent renal metabolism by proteolysis contribute to the elimination of many therapeutic peptides. Although small peptides have usually limited immunogenicity, formation of anti-drug antibodies with subsequent hypersensitivity reactions has been described for some peptide therapeutics. Numerous strategies have been applied to improve the pharmacokinetic properties of therapeutic peptides, especially to overcome their metabolic instability, low permeability, and limited tissue residence time. Applied techniques include amino acid substitutions, modification of the peptide terminus, inclusion of disulfide bonds, and conjugation with polymers or macromolecules such as antibody fragments or albumin. Application of model-based pharmacokinetic-pharmacodynamic correlations has been widely used for therapeutic peptides in support of drug development and dosage regimen design, especially because their targets are often well-described endogenous regulatory pathways and processes.
Purpose The objective was to elucidate the inhibition requirements of the human Organic Cation/Carnitine Transporter (hOCTN2). Methods Twenty-seven drugs were screened initially for their potential to inhibit uptake of L-carnitine into a stably transfected hOCTN2-MDCK cell monolayer. A HipHop common features pharmacophore was developed and used to search a drug database. Fifty-three drugs, including some not predicted to be inhibitors, were selected and screened in vitro. Results A common features pharmacophore was derived from initial screening data and consisted of three hydrophobic features and a positive ionizable feature. Among the 33 tested drugs that were predicted to map to the pharmacophore, 27 inhibited hOCTN2 in vitro (40% or less L-carnitine uptake from 2.5μM L-carnitine solution in presence of 500 μM drug, compared to L-carnitine uptake without drug present). Hence, the pharmacophore accurately prioritized compounds for testing. Ki measurements showed low micromolar inhibitors belonged to diverse therapeutic classes of drugs, including many not previously known to inhibit hOCTN2. Compounds were more likely to cause rhabdomyolysis if the Cmax/Ki ratio was higher than 0.0025. Conclusion A combined pharmacophore and in vitro approach found new, structurally diverse inhibitors for hOCTN2 that may possibly cause clinical significant toxicity such as rhabdomyolysis.
Background and ObjectivesRecombinant factor IX Fc fusion protein (rFIXFc) is a clotting factor developed using monomeric Fc fusion technology to prolong the circulating half-life of factor IX. The objective of this analysis was to elucidate the pharmacokinetic characteristics of rFIXFc in patients with haemophilia B and identify covariates that affect rFIXFc disposition.MethodsPopulation pharmacokinetic analysis using NONMEM® was performed with clinical data from two completed trials in previously treated patients with severe to moderate haemophilia B. Twelve patients from a phase 1/2a study and 123 patients from a registrational phase 3 study were included in this population analysis.ResultsA three-compartment model was found to best describe the pharmacokinetics of rFIXFc. For a typical 73 kg patient, the clearance (CL), volume of the central compartment (V1) and volume of distribution at steady state (Vss) were 2.39 dL/h, 71.4 dL and 198 dL, respectively. Because of repeat pharmacokinetic profiles at week 26 for patients in a subgroup, inclusion of inter-occasion variability (IOV) on CL and V1 were evaluated and significantly improved the model. The magnitude of IOV on CL and V1 were both low to moderate (<20 %) and less than the corresponding inter-individual variability. Body weight (BW) was found to be the only significant covariate for rFIXFc disposition. However, the impact of BW was limited, as the BW power exponents on CL and V1 were 0.436 and 0.396, respectively.ConclusionThis is the first population pharmacokinetic analysis that systematically characterized the pharmacokinetics of long-lasting rFIXFc in patients with haemophilia B. The population pharmacokinetic model for rFIXFc can be utilized to evaluate and optimize dosing regimens for the treatment of patients with haemophilia B.Electronic supplementary materialThe online version of this article (doi:10.1007/s40262-013-0129-7) contains supplementary material, which is available to authorized users.
Hypericum perforatum L., also known as Saint John’s Wort, has been well studied for its chemical composition and pharmacological activity. In this study, the antiviral activities of H. perforatum on infectious bronchitis virus (IBV) were evaluated in vitro and in vivo for the first time. The results of in vitro experiments confirmed that the antiviral component of H. perforatum was ethyl acetate extraction section (HPE), and results showed that treatment with HPE significantly reduced the relative messenger ribonucleic acid (mRNA) expression and virus titer of IBV, and reduced positive green immunofluorescence signal of IBV in chicken embryo kidney (CEK) cells. HPE treatment at doses of 480–120 mg/kg for 5 days, reduced IBV induced injury in the trachea and kidney, moreover, reduced the mRNA expression level of IBV in the trachea and kidney in vivo. The mRNA expression levels of IL-6, tumor necrosis factor alpha (TNF-α), and nuclear factor kappa beta (NF-κB) significantly decreased, but melanoma differentiation-associated protein 5 (MDA5), mitochondrial antiviral signaling gene, interferon alpha (IFN-α), and interferon beta (IFN-β) mRNA levels significantly increased in vitro and in vivo. Our findings demonstrated that HPE had significant anti-IBV effects in vitro and in vivo, respectively. In addition, it is possible owing to up-regulate mRNA expression of type I interferon through the MDA5 signaling pathway and down-regulate mRNA expression of IL-6 and TNF-α via the NF-κB signaling pathway. Moreover, the mainly active compositions of HPE analyzed by high-performance liquid chromatography/electrospray ionization–mass spectroscopy (ESI-MS) are hyperoside, quercitrin, quercetin, pseudohypericin, and hypericin, and a combination of these compounds could mediate the antiviral activities. This might accelerate our understanding of the antiviral effect of H. perforatum and provide new insights into the development of effective therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.