Gentrification has provoked considerable controversy surrounding its effects on residential displacement. Using a unique individual-level, longitudinal data set, this study examines mobility rates and residential destinations of residents in gentrifying neighborhoods during the recent housing boom and bust in Philadelphia for various strata of residents and different types of gentrification. We find that vulnerable residents, those with low credit scores and without mortgages, are generally no more likely to move from gentrifying neighborhoods compared with their counterparts in nongentrifying neighborhoods. When they do move, however, they are more likely to move to lower-income neighborhoods. Residents in gentrifying neighborhoods at the aggregate level have slightly higher mobility rates, but these rates are largely driven by more advantaged residents. These findings shed new light on the heterogeneity in mobility patterns across residents in gentrifying neighborhoods and suggest that researchers should focus more attention on the quality of residential moves and nonmoves for less advantaged residents, rather than mobility rates alone.
a b s t r a c tThree commonly applied extraction techniques for persistent organic chemicals, Soxhlet extraction (SE), accelerated solvent extraction (ASE) and microwave-assisted extraction (MAE), were applied on soil and fish samples in order to evaluate their performances. For both PCBs and PBDEs, the two more recent developed techniques (ASE and MAE) were in general capable of producing comparable extraction results as the classical SE, and even higher extraction recoveries were obtained for some PCB congeners with large octanol-water partitioning coefficients (K ow ). This relatively uniform extraction results from ASE and MAE indicated that elevated temperature and pressure are favorable to the efficient extraction of PCBs from the solid matrices. For PBDEs, difference between the results from MAE and ASE (or SE) suggests that the MAE extraction condition needs to be carefully optimized according to the characteristics of the matrix and analyte to avoid degradation of higher brominated BDE congeners and improve the extraction yields.
a b s t r a c tRemote mountain areas besides high latitude regions are beginning to receive increased attention in studying the transport and behavior of persistent organic pollutants (POPs). In the present work, surface soil samples were collected from the Tibetan Plateau, the highest plateau in the world which includes the northern slope of Mt. Qomolangma, to investigate the levels and trends of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) along the altitudinal gradient. The average PCB and PBDE concentrations were 185.6 ng kg À1 dry weight (dw) (range 47.1-422.6 ng kg À1 dw) and 11.1 ng kg À1 dw (range 4.3-34.9 ng kg À1 dw), respectively. Regression analysis between the log-transformed TOC-normalized concentrations and the altitudes of the sampling sites showed two opposite trends with regard to altitude dependence: negative relationship with altitude below about 4500 m followed by a positive altitude dependence above this point. Considering minimum anthropogenic activities and very sparse precipitation in the north of Himalayas, the trends above 4500 m imply that the significant altitude dependence of these two groups of POPs were irrespective of pollution sources, but could be predicted by the global distillation effect involving cold condensation in high altitude mountain areas. Increasing levels of heavier congeners were found in higher altitude sites, although the lighter congeners were the main contributors to the total amount, suggesting that less volatile congeners seem to become enriched easier than those more volatile at higher altitudes in this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.