Towing is a critical process to deploy a cylindrical drilling platform. However, the towing process faces a great variety of risks from a complex nautical environment, the dynamics in towing and maneuvering, to unexpected events. Therefore, safely navigating the towing system following a planned route to a target sea area is essential. To tackle the time-varying disturbances induced by wind, current and system parametric uncertainties, a path following control method for a towing system of cylindrical drilling platform is designed based on linear active disturbance rejection control. By utilizing Maneuvering Modeling Group model as well as a catenary model, we develop a three degree-of-freedom dynamic mathematical model of the towing system under external environmental disturbances and internal uncertainties. Furthermore, we design a linear active disturbance rejection control path following controller for real-time tracking error correction based on a guidance method combining cross-track error and parallax. Finally, the path following performance of the towing system is evaluated in a simulation environment under various disturbances and internal uncertainties, where the corresponding tracking error is analyzed. The results show that the linear active disturbance rejection control performs well under both the external disturbance and inherent uncertainties, and better satisfy the tracking performance criteria than a traditional proportional integral derivative controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.