Heterogeneous social networks, which are characterized by diverse interaction types, have resulted in new challenges for missing link prediction. Most deep learning models tend to capture type-specific features to maximize the prediction performances on specific link types. However, the types of missing links are uncertain in heterogeneous social networks; this restricts the prediction performances of existing deep learning models. To address this issue, we propose a multi-type transferable method (ππππ) for missing link prediction in heterogeneous social networks, which exploits adversarial neural networks to remain robust against type differences. It comprises a generative predictor and a discriminative classifier. The generative predictor can extract link representations and predict whether the unobserved link is a missing link. To generalize well for different link types to improve the prediction performance, it attempts to deceive the discriminative classifier by learning transferable feature representations among link types. In order not to be deceived, the discriminative classifier attempts to accurately distinguish link types, which indirectly helps the generative predictor judge whether the learned feature representations are transferable among link types. Finally, the integrated ππππ is constructed on this minimax two-player game between the generative predictor and discriminative classifier to predict missing links based on transferable feature representations among link types. Extensive experiments show that the proposed ππππ can outperform state-of-the-art baselines for missing link prediction in heterogeneous social networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsβcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright Β© 2025 scite LLC. All rights reserved.
Made with π for researchers
Part of the Research Solutions Family.