Peanut (Arachis hypogaea Linn. cv: Luhua 11) and tomato (Lycopersicon esculentum Mill. cv: Zhongshu 4) were inoculated with arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae BEG167 (Fm), Rhizophagus intraradices BEG141 (Ri), and Glomus versiforme Berch (Gv), and/or Spodoptera exigua (S. exigua) under greenhouse conditions. Results indicated that feeding by S. exigua had little influence on colonization of peanut plants by AMF, but improved colonization of tomato by Fm and Gv. Feeding by S. exigua had little influence on leaf net photosynthetic rate, transpiration rate, and stomatal conductance of nonmycorrhizal peanut plants but significantly improved net photosynthetic rate and transpiration rate of mycorrhizal plants of both hosts. AMF with or without S. exigua inoculation improved host plant photosynthetic characteristics, growth, and hormone status. Fm showed maximum beneficial effects, followed by Gv. The concentrations and ratios of phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin (GA), zeatin riboside (ZR), and jasmonic acid (JA) in the leaves of the host plants were changed due to the interaction between AMF and S. exigua. Generally, AMF with or without S. exigua inoculation increased the concentrations of GA, ZR, and JA and the ratios of IAA/ABA, GA/ABA, ZR/ABA, and IAA + GA + ZR/ABA, while feeding by S. exigua on nonmycorrhizal plants showed the opposite effect. The concentration of JA in the leaves of peanut and tomato inoculated with Fm or Fm + S. exigua was 1.9 and 1.9 times and 2.5 and 2.7 times, respectively, greater than that of the controls inoculated with neither. There was a negative correlation between the JA concentration and the survival percentage of S. exigua larva. We conclude that indirect interactions between AMF and insect herbivores changed the photosynthetic and hormone characteristics, and ratios of phytohormones, thereby revealing mechanisms of belowground-aboveground interactions.
Heliothis virescens ascovirus 3 h (HvAV-3h), a dsDNA insect virus, belonging to the family Ascoviridae, can infect caterpillars of several Noctuidae species by ovipositing parasitoid wasps. In order to provide a comprehensive overview of the interactive responses of host larvae after infection by the ascovirus, a transcriptome analysis of Spodoptera exigua to HvAV-3h was conducted from 6 to 168 hours post infection (hpi). Approximately 101.64 Gb of RNA sequencing (RNA-seq) data obtained from infected and uninfected S. exigua larvae were used to perform a de novo transcriptome assembly, which generated approximately 62,258 S. exigua unigenes. Using differential gene expression analysis, it was determined that the majority of host transcripts were down-regulated beginning at 6 hpi and continuing throughout the infection period, although there was an increase in up-regulated unigene number during the 12 to 72 hpi stage. It is noteworthy that the most abundantly enriched pathways in KEGG annotation were Metabolism terms, indicating that the host larval metabolic mechanisms were highly influenced post HvAV-3h infection. In addition, the host cuticle protein encoding unigenes were highly down-regulated in most of the situations, suggesting that the host larval cuticle synthesis were inhibited by the viral infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.