PARP inhibitors are active in tumors with defects in DNA homologous recombination (HR) due to BRCA1/2 mutations. The phosphoinositide 3-kinase (PI3K) signaling pathway preserves HR steady state. We hypothesized that in BRCA-proficient triple-negative breast cancer (TNBC), PI3K inhibition would result in HR impairment and subsequent sensitization to PARP inhibitors. We show in TNBC cells that PI3K inhibition leads to DNA damage, downregulation of BRCA1/2, gain in poly-ADP-ribosylation, and subsequent sensitization to PARP inhibition. In TNBC patient–derived primary tumor xenografts, dual PI3K and PARP inhibition with BKM120 and olaparib reduced the growth of tumors displaying BRCA1/2 downregulation following PI3K inhibition. PI3K-mediated BRCA downregulation was accompanied by extracellular signal–regulated kinase (ERK) phosphorylation. Overexpression of an active form of MEK1 resulted in ERK activation and downregulation of BRCA1, whereas the MEK inhibitor AZD6244 increased BRCA1/2 expression and reversed the effects of MEK1. We subsequently identified that the ETS1 transcription factor was involved in the ERK-dependent BRCA1/2 downregulation and that knockdown of ETS1 led to increased BRCA1/2 expression, limiting the sensitivity to combined BKM120 and olaparib in 3-dimensional culture. SIGNIFICANCE Treatment options are limited for patients with TNBCs. PARP inhibitors have clinical activity restricted to a small subgroup of patients with BRCA mutations. Here, we show that PI3K blockade results in HR impairment and sensitization to PARP inhibition in TNBCs without BRCA mutations, providing a rationale to combine PI3K and PARP inhibitors in this indication. Our findings could greatly expand the number of patients with breast cancer that would benefit from therapy with PARP inhibitors. On the basis of our findings, a clinical trial with BKM120 and olaparib is being initiated in patients with TNBCs.
Cadmium is a dangerous metal distributed widely in the environment. Members of our laboratory recently identified the ZIP8 transporter protein, encoded by the mouse Slc39a8 gene, to be responsible for genetic differences in response to cadmium damage of the testis. Stable retroviral infection of the ZIP8 cDNA in mouse fetal fibroblast cultures (rvZIP8 cells) leads to as much as a 10-fold increase in the rate of intracellular cadmium influx and accumulation. In the present study, we showed that cadmium uptake operated maximally at pH 7.5 and a temperature of 37 degrees C and was inhibited by cyanide. Of more than a dozen cations tested, manganese(II) was the best competitive cation for cadmium uptake. The Km for Cd2+ uptake was 0.62 microM, and the Km for Mn2+ uptake was 2.2 microM; thus, manganese is probably the physiological substrate for ZIP8. Cadmium uptake was independent of sodium, potassium or chloride ions, but strongly dependent on the presence of bicarbonate. By Western blot analysis of rvZIP8 cells, we showed that ZIP8 protein was glycosylated. Using Z-stack confocal microscopy in Madin-Darby canine kidney polarized epithelial cells, we found that ZIP8 was localized on the apical side-implying an important role for manganese or cadmium uptake and disposition. It is likely that ZIP8 is a Mn2+/HCO3- symporter, that a HCO3- gradient across the plasma membrane acts as the driving force for manganese uptake, and that cadmium is a rogue hitchhiker displacing manganese to cause cadmium-associated disease.
Platinum agents are active in mTNBC, especially in patients with germline BRCA1/2 mutations. A measure of tumor DNA repair function may identify patients without mutations who could benefit from platinum therapy agents. Prospective controlled confirmatory trials are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.