Previous clinical studies have found that the levels of tumor-infiltrating lymphocytes (TILs) significantly correlated with prognosis in hepatocellular carcinoma (HCC). However, these conclusions and data remain controversial. We performed a systematic review and meta-analysis to assess the prognostic value and clinical utilization of TILs in patients with HCC. A total of 23 relevant studies of 3173 patients were included into our meta-analysis. The results demonstrated that high levels of CD8+ and CD3+ TILs had a better prognostic value on overall survival (OS), with HRs of 0.71 (P = 0.04) and 0.63 (P = 0.03), respectively, compared to low levels, as did high levels of CD8+, CD3+ and CD4+ TILs on disease/recurrence-free survival (DFS/RFS), with HRs of 0.66 (P = 0.01), 0.60 (P = 0.01) and 0.79 (P = 0.04), respectively. In contrast, high levels of FoxP3+ TILs had a worse prognostic value on OS and DFS/RFS, with HRs of 2.06 (P < 0.00001) and 1.77 (P < 0.00001), respectively. The FoxP3+/CD4+ and FoxP3+/CD8+ ratios negatively correlated with OS and DFS/RFS. These findings suggest that TILs may serve as a prognostic biomarker in HCC. However, further research should be performed to clarify the clinical value of TILs in HCC.
Axin is a key scaffolding protein responsible for the formation of the β-catenin destruction complex. Stability of Axin protein is regulated by the ubiquitin-proteasome system, and modulation of cellular concentration of Axin protein has a profound effect on Wnt/β-catenin signaling. Although E3s promoting Axin ubiquitination have been identified, the deubiquitinase responsible for Axin deubiquitination and stabilization remains unknown. Here, we identify USP7 as a potent negative regulator of Wnt/β-catenin signaling through CRISPR screens. Genetic ablation or pharmacological inhibition of USP7 robustly increases Wnt/β-catenin signaling in multiple cellular systems. USP7 directly interacts with Axin through its TRAF domain, and promotes deubiquitination and stabilization of Axin. Inhibition of USP7 regulates osteoblast differentiation and adipocyte differentiation through increasing Wnt/β-catenin signaling. Our study reveals a critical mechanism that prevents excessive degradation of Axin and identifies USP7 as a target for sensitizing cells to Wnt/β-catenin signaling.
The Wnt/β-catenin signaling pathway plays essential roles in embryonic development and adult tissue homeostasis. Axin is a concentration-limiting factor responsible for the formation of the β-catenin destruction complex. Wnt signaling itself promotes the degradation of Axin. However, the underlying molecular mechanism and biological relevance of this targeting of Axin have not been elucidated. Here, we identify SIAH1/2 (SIAH) as the E3 ligase mediating Wnt-induced Axin degradation. SIAH proteins promote the ubiquitination and proteasomal degradation of Axin through interacting with a VxP motif in the GSK3-binding domain of Axin, and this function of SIAH is counteracted by GSK3 binding to Axin. Structural analysis reveals that the Axin segment responsible for SIAH binding is also involved in GSK3 binding but adopts distinct conformations in Axin/SIAH and Axin/GSK3 complexes. Knockout of SIAH1 blocks Wnt-induced Axin ubiquitination and attenuates Wnt-induced β-catenin stabilization. Our data suggest that Wnt-induced dissociation of the Axin/GSK3 complex allows SIAH to interact with Axin not associated with GSK3 and promote its degradation and that SIAH-mediated Axin degradation represents an important feed-forward mechanism to achieve sustained Wnt/β-catenin signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.