Abstract. In this paper we derive an upper bound for the degree of the strict invariant algebraic curve of a polynomial system in the complex project plane under generic condition. The results are obtained through the algebraic multiplicities of the system at the singular points. A method for computing the algebraic multiplicity using Newton polygon is also presented.
Consideration of the monodromy group of the hypergeometric equation z(1−z)w″+[γ−(1+α+β)z]w′−αβw=0, in the case of α=1/6, β=5/6, γ=7/6, shows that the global hypergeometric function solution F(1/6;5/6;7/6;z) is nonalgebraic although it has only algebraic singularities. Therefore, the proposition given in [2,4] that a function is algebraic if it has only the algebraic singularities on the extended z-plane is not true. Through introduction of the concept of singular element criterion for deciding when a function is algebraic on the basis of properties of its singularities is given
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.