The ballasted track superstructure is characterized by a relative quick deterioration of track geometry due to ballast settlements and the accumulation of sleeper voids. The track zones with the sleeper voids differ from the geometrical irregularities with increased dynamic loading, high vibration, and unfavorable ballast-bed and sleeper contact conditions. This causes the accelerated growth of the inhomogeneous settlements, resulting in maintenance-expensive local instabilities that influence transportation reliability and availability. The recent identification and evaluation of the sleeper support conditions using track-side and on-board monitoring methods can help planning prevention activities to avoid or delay the development of local instabilities such as ballast breakdown, white spots, subgrade defects, etc. The paper presents theoretical and experimental studies that are directed at the development of the methods for sleeper support identification. The distinctive features of the dynamic behavior in the void zone compared to the equivalent geometrical irregularity are identified by numeric simulation using a three-beam dynamic model, taking into account superstructure and rolling stock dynamic interaction. The spectral features in time domain in scalograms and scattergrams are analyzed. Additionally, the theoretical research enabled to determine the similarities and differences of the dynamic interaction from the viewpoint of track-side and on-board measurements. The method of experimental investigation is presented by multipoint track-side measurements of rail-dynamic displacements using high-speed video records and digital imaging correlation (DIC) methods. The method is used to collect the statistical information from different-extent voided zones and the corresponding reference zones without voids. The applied machine learning methods enable the exact recent void identification using the wavelet scattering feature extraction from track-side measurements. A case study of the method application for an on-board measurement shows the moderate results of the recent void identification as well as the potential ways of its improvement.
Railway damage detection is of great significance in ensuring railway safety. The cracks on the rail surface play a key role in studying the formation and development process of rail damage, predicting the occurrence of rail defects, and then improving the service life of the rail. However, due to the small shape of the cracks, the typical detection method is relatively complicated, and the speed is quite slow. Although traditional magnetic particle inspection technology is fairly accurate at detection, it is costly and inconvenient to carry and install, while also limiting the detection speed and affecting the system’s operation. In this paper, a semantic segmentation detection method is developed by using various collected rail surface crack data and deep learning through a neural network. By comparing the inspection of the same rail surface with magnetic particle inspection technology, only inexpensive cameras are used and the inspection speed is increased while maintaining relatively high accuracy. In addition, the method can achieve fast detection speeds if it is extended to be combined with high-frequency cameras. It is an economical, efficient, and environmentally friendly method for future rail surface detection.
Rails are subjected to the processes of wear, corrosion and contact and bending fatigue during their lifecycle. As a result of these processes, various types of damage and defects are formed in rails. The residual life of rails depends on the size, position, and orientation of defects. Maximum permissible crack-size values are calculated in this paper using the finite element method. The crack plane orientation relative to the contact surface plane is analysed. The dependence of the stress intensity factor on the crack area is established. This allows continued use of defective rails and safe operation on low-activity railways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.