Objective: Knee Osteoarthritis (KOA), is the most common joint disease worldwide. The pathogenesis of KOA is complex and electroacupuncture (EA) is an effective therapy for KOA, but the mechanism remains unclear. In this study, we aim to investigate the potential therapeutic effect of EA on the rat model of KOA induced by monosodium iodoacetate (MIA) and its relationship with NLRP3 inflammasome by immunohistochemistry and western blot. Methods: KOA was induced by intra-articular injection of MIA (3 mg/50 μL) into the right knee joint of rats. Forty-five male rats weighing 250-300g were randomly divided into 3 groups: control group, KOA group, and KOA + electroacupuncture group (KOA+EA). EA treatment lasted for 2 weeks (6 times a week). Paw withdrawal threshold tests were used to assess mechanical allodynia once a week. Safranin O/Fast Green and hematoxylin and eosin (H&E) staining were used to assess the damage to cartilage, synovium, and subpatellar fat pad (IFP). Immunohistochemistry was used to observe NLRP3 inflammasome-associated protein-positive cells in the same field of view and western blot was used to detect the expression of the associated protein in cartilage tissue. Results: The KOA group showed mechanical hyperalgesia, joint inflammation, and significant cartilage tissue destruction. Safranin O/Fast Green and H&E staining revealed that EA alleviated the joint pathological changes caused by KOA and had a protective effect on cartilage, synovium, and IFP destruction. Mechanical allodynia pain and joint swelling were reduced in KOA rats after EA treatment. Immunohistochemistry and western blot showed significant inhibition of NLRP3 inflammasome-associated protein. Conclusion: The results indicate that EA can inhibit NLRP3 inflammasome and reduce pyroptosis, which results in the protection of cartilage tissue and the treatment of KOA. It provides reliable evidence for the development of EA in the treatment of KOA and the clinical application of acupuncture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.