In order to make up for the shortcomings of independent sensors and provide more reliable estimation, a multi-sensor fusion framework for simultaneous localization and mapping is proposed in this paper. Firstly, the light detection and ranging (LiDAR) point cloud is screened in the front-end processing to eliminate abnormal points and improve the positioning and mapping accuracy. Secondly, for the problem of false detection when the LiDAR is surrounded by repeated structures, the intensity value of the laser point cloud is used as the screening condition to screen out robust visual features with high distance confidence, for the purpose of softening. Then, the initial factor, registration factor, inertial measurement units (IMU) factor and loop factor are inserted into the factor graph. A factor graph optimization algorithm based on a Bayesian tree is used for incremental optimization estimation to realize the data fusion. The algorithm was tested in campus and real road environments. The experimental results show that the proposed algorithm can realize state estimation and map construction with high accuracy and strong robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.