Monostable vibration can eliminate dynamic bifurcation and improve system stability, which is required in many microelectromechanical systems (MEMS) applications, such as microbeam-based and comb-driven resonators. This article aims to theoretically investigate the monostable vibration in size-effected MEMS via a low dimensional model. An improved single degree of freedom model to describe electrically actuated microbeam-based resonators is obtained by using modified couple stress theory and Nonlinear Galerkin method. Static displacement, pull-in voltage, resonant frequency and especially the monostable dynamic behaviors of the resonators are investigated in detail. Through perturbation analysis, an approximate average equation is derived by the application of the method of Multiple Scales. Theoretical expressions about parameter space and maximum amplitude of monostable vibration are then deduced. Results show that this improved model can describe the static behavior more accurately than that of single degree of freedom model via traditional Galerkin Method. This desired monostable large amplitude vibration is significantly affected by the ratio of the gap width to mircobeam thickness. The optimization design results show that reasonable decrease of this ratio can be beneficial to monostable vibration. All these analytical results are verified by numerical results via Differential Quadrature method, which show excellent agreement with each other. This analysis has the potential of improving dynamic performance in MEMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.